Here's that cdata example converted into the equivalent tidyr code:
library(tidyr)
df <- tribble(
~val_loss, ~val_acc, ~loss, ~acc, ~epoch,
-0.3769818, 0.8722, -0.5067290, 0.7852000, 1,
-0.2996994, 0.8895, -0.3002033, 0.9040000, 2,
-0.2963943, 0.8822, -0.2165675, 0.9303333, 3,
-0.2779052, 0.8899, -0.1738829, 0.9428000, 4,
-0.2842501, 0.8861, -0.1410933, 0.9545333, 5,
-0.3119754, 0.8817, -0.1135626, 0.9656000, 6,
)
spec <- tribble(
~.name, ~measure, ~.value,
"loss", "minus binary cross entropy", "training",
"acc", "accuracy", "training",
"val_loss", "minus binary cross entropy", "validation",
"val_acc", "accuracy", "validation",
)
df %>% pivot_longer_spec(spec)
#> # A tibble: 12 x 4
#> epoch measure training validation
#> <dbl> <chr> <dbl> <dbl>
#> 1 1 minus binary cross entropy -0.507 -0.377
#> 2 1 accuracy 0.785 0.872
#> 3 2 minus binary cross entropy -0.300 -0.300
#> 4 2 accuracy 0.904 0.890
#> 5 3 minus binary cross entropy -0.217 -0.296
#> 6 3 accuracy 0.930 0.882
#> 7 4 minus binary cross entropy -0.174 -0.278
#> 8 4 accuracy 0.943 0.890
#> 9 5 minus binary cross entropy -0.141 -0.284
#> 10 5 accuracy 0.955 0.886
#> 11 6 minus binary cross entropy -0.114 -0.312
#> 12 6 accuracy 0.966 0.882
Created on 2019-09-17 by the reprex package (v0.3.0)