Using reformulate with aov in an R function

I am writing a function to run anova over multiple variables. I tried the function with one predictor and it works fine, now I am trying with two variables but the function is breaking down.

Below is the code with one predictor "Condition"

lapply(names(data10)[6:ncol(data10)], function(x) {
  aov.GROUPconint <- lme(reformulate('Condition', x), random = ~1|Subject, data=data10)
  GROUPconint.posthoc <- summary(glht(aov.GROUPconint, linfct = mcp(Condition = "Tukey")))
  GROUPconint.posthoc
}) -> result


Using two predictors -"Condition" and "test" - the code breaks down, I don't know how to edit the code above

lapply(names(data10)[6:ncol(data10)], function(x) {
  aov.GROUPconint <- lme(reformulate(c('Condition', 'test'), x), random = ~1|Subject, data=data10)
  GROUPconint.posthoc <- summary(glht(aov.GROUPconint, linfct = mcp(Condition = "Tukey")))
  GROUPconint.posthoc
}) -> result

data10<- structure(list(Subject = structure(c(12L, 24L, 12L, 24L, 12L, 
24L, 12L, 24L, 12L, 24L, 12L, 24L), .Label = c("P14", "P15", 
"P16", "P17", "P18", "P19", "P20", "P21", "P22", "P23", "P24", 
"P25", "P26", "P27", "P28", "P29", "P30", "P31", "P32", "P33", 
"P34", "P35", "P37", "P38"), class = "factor"), Condition = structure(c(1L, 
1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L), .Label = c("CEN", 
"IPS", "CTL"), class = "factor"), Wave = c(1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1), test = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 
2L, 2L, 1L, 1L, 2L, 2L), .Label = c("Block 1", "Block 10"), class = "factor"), 
    ...5 = c("P25-CondA1", "P38-CondA1", "P25-CondA1", "P38-CondA1", 
    "P25-CondB", "P38-CondB", "P25-CondB", "P38-CondB", "P25-CondC", 
    "P38-CondC", "P25-CondC", "P38-CondC"), Fp1 = c(-5.840139, 
    -24.64444, -5.91461, -10.269491, -1.063752, -10.417562, -3.057545, 
    -22.833533, -0.528596, -6.226959, -5.206908, -16.431027), 
    Fz = c(-0.160478, -4.796688, -0.572049, -2.42414, -0.081133, 
    -2.212509, -0.507796, -5.125658, -0.247309, -1.391691, -0.340251, 
    -3.275482), F3 = c(-3.237156, -7.13964, -2.356562, -4.498527, 
    -1.912161, -3.369108, -0.764519, -7.338588, -0.967395, -2.61488, 
    -2.006442, -6.064484), F7 = c(-12.291867, -23.007904, -13.424168, 
    -51.746685, -4.683314, -16.146104, 3.129978, -16.762208, 
    -4.072039, -3.997164, -9.893088, -30.463026), FT9 = c(-5.145666, 
    -19.855898, -7.159363, -79.547642, -2.737132, -24.988066, 
    -0.764389, -8.678315, -2.424962, -3.655473, -16.684891, -40.817396
    ), FC5 = c(-1.912046, -7.299207, -2.782865, -13.433165, -2.717561, 
    -6.404056, -1.020601, -5.731675, -1.449527, -2.455464, -4.816248, 
    -8.451322), FC1 = c(-0.014723, -3.250151, -0.025628, -2.072377, 
    -0.025264, -0.816653, -0.008836, -1.645703, -0.025248, -0.886561, 
    -0.019677, -1.440108), C3 = c(-1.673774, -3.907241, -1.517202, 
    -3.189047, -1.721737, -1.953359, -0.130617, -1.255402, -1.000825, 
    -2.154744, -4.642536, -2.5244), T7 = c(-6.692289, -11.995039, 
    -4.388139, -26.845076, -2.150749, -19.960795, 0.957167, -9.285198, 
    -2.610707, -3.387525, -16.078687, -13.23254), TP9 = c(-6.577069, 
    -24.083291, -5.319204, -17.99928, -2.009148, -22.327639, 
    -0.39423, -11.561658, -11.369999, -1.670421, -27.666286, 
    -8.352513), CP5 = c(-4.256723, -7.168578, -3.69391, -8.595433, 
    -3.172519, -5.686751, -1.439715, -5.684416, -2.23341, -3.819792, 
    -12.817709, -4.332906), CP1 = c(-2.424485, -2.105764, -2.437918, 
    -1.684633, -1.896294, -0.603067, -1.310922, -1.246486, -1.058182, 
    -1.723797, -4.112311, -0.39083), Pz = c(-5.230209, -6.931432, 
    -5.447097, -4.420237, -4.298466, -0.572419, -3.76145, -4.866791, 
    -1.882695, -2.773345, -7.048977, -1.297095), P3 = c(-5.717413, 
    -8.568655, -5.872956, -6.676226, -3.610336, -3.78263, -2.678968, 
    -5.256058, -1.84788, -4.615055, -10.663448, -3.350067), P7 = c(-8.747675, 
    -14.647256, -5.446711, -13.149602, -3.162763, -11.810952, 
    -0.844879, -10.721099, -3.343471, -1.414516, -21.813454, 
    -5.784583), O1 = c(-6.725148, -23.142534, -12.192043, -14.436759, 
    -5.107042, -8.746607, -4.771125, -13.834345, -3.327836, -0.988959, 
    -23.619593, -8.835368), Oz = c(-6.360107, -19.795088, -11.102469, 
    -13.143209, -4.797536, -6.422619, -4.972995, -13.851071, 
    -3.273859, -0.095299, -23.344231, -10.013479), O2 = c(-8.604531, 
    -16.010789, -9.163555, -14.997259, -5.795494, -7.69402, -4.861372, 
    -15.428395, -3.201026, 0.689055, -25.061542, -14.588914), 
    P4 = c(-5.786419, -8.570093, -6.01655, -7.250971, -4.000653, 
    -5.302266, -3.95116, -11.026836, -1.672558, 0.563733, -9.640803, 
    -5.720633), P8 = c(-10.232556, -11.447704, -6.468332, -13.059249, 
    -3.728454, -8.160377, -1.216276, -15.638084, -3.104394, 1.522973, 
    -17.690755, -17.926968), TP10 = c(-8.034667, -11.84704, -6.469727, 
    -17.795867, -3.392685, -14.240206, -0.750774, -14.076242, 
    -2.212408, -0.838559, -24.863607, -13.99878), CP6 = c(-4.075277, 
    -6.763672, -4.167653, -13.016007, -3.034482, -6.815944, -1.626736, 
    -10.962036, -2.496595, -0.236931, -7.798438, -6.962835), 
    CP2 = c(-2.405001, -2.252853, -2.180014, -2.301028, -2.242261, 
    -1.182271, -2.213638, -3.496284, -1.008576, -0.61297, -3.492367, 
    -0.51545), Cz = c(-0.468023, -0.004084, -0.638258, -0.00788, 
    -0.851801, -0.007214, -0.706636, -0.010855, -0.536705, -0.013132, 
    -1.039244, -0.007484), C4 = c(-1.666512, -2.444287, -1.888915, 
    -5.533711, -1.222455, -1.965361, -0.873634, -4.527433, -1.818675, 
    -0.937223, -2.389627, -2.275628), T8 = c(-6.815842, -8.228049, 
    -5.290419, -15.105313, -1.736178, -13.356379, -1.95265, -19.905574, 
    -3.711849, -9.398742, -10.633943, -12.196464), EOG = c(-20.232283, 
    -99.109516, -42.37872, -41.447092, 1.38567, -23.524751, 3.979485, 
    -17.365329, -6.501096, -8.57049, -27.861358, -35.333672), 
    FC6 = c(-3.332464, -3.964186, -3.596093, -15.233898, -0.609353, 
    -6.322399, -0.27383, -7.378963, -2.265338, -1.842532, -3.983366, 
    -3.932509), FC2 = c(-0.026439, -1.089279, -0.01404, -1.967481, 
    -0.021138, -0.912876, -0.016665, -1.514663, -0.016964, -0.101446, 
    -0.017254, -0.920491), F4 = c(-1.289919, -3.210157, -1.225391, 
    -8.599483, -0.13505, -4.758277, -0.16653, -6.277869, -1.030201, 
    -0.780301, -1.717511, -3.839278), F8 = c(-4.269784, -14.505706, 
    -9.1726, -44.947816, 0.269252, -16.018926, -2.184163, -13.581011, 
    -2.464344, -5.565065, -6.70289, -12.713321), Fp2 = c(-10.068992, 
    -12.382243, 0.860865, -23.860863, 0.389788, -13.042772, 0.540714, 
    -21.70098, -2.526254, 2.619264, -3.399223, -59.010281)), row.names = c(NA, 
-12L), class = c("tbl_df", "tbl", "data.frame"))

This is the error message

Error in na.fail.default(list(Fp1 = c(-4.50016, -1.485162, -2.205266, : missing values in object

Hello.
Thanks for providing code , but you could take further steps to make it more convenient for other forum users to help you.

Share some representative data that will enable your code to run and show the problematic behaviour.

You might use tools such as the library datapasta, or the base function dput() to share a portion of data in code form, i.e. that can be copied from forum and pasted to R session.

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.