data <- read.csv(input$file_upload$datapath)
data$Date_Time <- as.POSIXct(data$Date_Time, format = "%Y-%m-%d %H:%M:%S")
valid_data <- data[is.finite(data$CGM_Value), ]
last_date <- max(valid_data$Date_Time, na.rm = TRUE)
start_date <- last_date - 42460*60 # 4 days in seconds
filtered_data <- subset(valid_data, Date_Time >= start_date & Date_Time <= last_date)
result_data <- filtered_data %>%
mutate(Date = as.Date(Date_Time), Hour = as.numeric(format(Date_Time, "%H"))) %>%
group_by(Date, Hour)
This is my code ,but in this code mutate() doenot work on filtered_data instead it work on data frame of data.I want to add Date and Hour to already existing filter_data data frame .
in this code mutate() doe not work on filtered_data instead it work on data frame of data
Your code seems to make a result_data from mutating on filtered_data adding a Date and Hour field
what do you mean 'does not work' ? do you mean it errors ? if so what is the error ?
do you mean it gives incorrect results ? if so how is what you get different from what you intend ?
it does not mean any error instead 'filter_data' containing 'date_time' in rage between 4-8-2018 to 8-8-2018 but after using the function mutate() on this 'filter_data' it return the' result_data' containg date from 3-8-2018 to 7-8-2018 ,that means it doe not work on the ' filtered_data' .
I don't see how what you describe is possible. result_data would have the same rows as filter_data as you only mutate and group it; so no rows are added or removed; furthermore it should have the same date_time as no instruction modifies that.
I tested out your code and it worked as I expect.
You should consider making a minimal reproducible example, if you do indeed have an issue that can be investigated
library(tidyverse)
data <- data.frame(Date_Time='2024-06-27 11:29:33',
CGM_Value=1)
data$Date_Time <- as.POSIXct(data$Date_Time, format = "%Y-%m-%d %H:%M:%S")
valid_data <- data[is.finite(data$CGM_Value), ]
last_date <- max(valid_data$Date_Time, na.rm = TRUE)
start_date <- last_date - 42460*60 # 4 days in seconds
filtered_data <- subset(valid_data, Date_Time >= start_date & Date_Time <= last_date)
result_data <- filtered_data %>%
mutate(Date = as.Date(Date_Time), Hour = as.numeric(format(Date_Time, "%H"))) %>%
group_by(Date, Hour)
> filtered_data
Date_Time CGM_Value
1 2024-06-27 11:29:33 1
> result_data
# A tibble: 1 × 4
# Groups: Date, Hour [1]
Date_Time CGM_Value Date Hour
<dttm> <dbl> <date> <dbl>
1 2024-06-27 11:29:33 1 2024-06-27 11
Hi @sql ,
Could you run these two lines:
data <- read.csv(input$file_upload$datapath)
dput(data)
and post the output here, between a pair of triple backticks, like this?
```
paste output of dput() here
```
That might help folks here sort out what might be happening.
this work fine for me but in my result_data date 8-8-2018 is taken as 7-8-2018.
Post-Randomization 06-08-2018 22:12 144 06-08-2018 22
Post-Randomization 06-08-2018 22:17 155 06-08-2018 22
Post-Randomization 06-08-2018 22:22 166 06-08-2018 22
Post-Randomization 06-08-2018 22:27 170 06-08-2018 22
Post-Randomization 06-08-2018 22:32 174 06-08-2018 22
Post-Randomization 06-08-2018 22:37 176 06-08-2018 22
Post-Randomization 06-08-2018 22:42 174 06-08-2018 22
Post-Randomization 06-08-2018 22:47 165 06-08-2018 22
Post-Randomization 06-08-2018 22:52 162 06-08-2018 22
Post-Randomization 06-08-2018 22:57 160 06-08-2018 22
Post-Randomization 06-08-2018 23:02 157 06-08-2018 23
Post-Randomization 06-08-2018 23:07 155 06-08-2018 23
Post-Randomization 06-08-2018 23:12 153 06-08-2018 23
Post-Randomization 06-08-2018 23:17 153 06-08-2018 23
Post-Randomization 06-08-2018 23:22 153 06-08-2018 23
Post-Randomization 06-08-2018 23:27 153 06-08-2018 23
Post-Randomization 06-08-2018 23:32 154 06-08-2018 23
Post-Randomization 06-08-2018 23:37 154 06-08-2018 23
Post-Randomization 06-08-2018 23:42 153 06-08-2018 23
Post-Randomization 06-08-2018 23:47 152 06-08-2018 23
Post-Randomization 06-08-2018 23:52 153 06-08-2018 23
Post-Randomization 06-08-2018 23:57 155 06-08-2018 23
Post-Randomization 07-08-2018 00:02 159 06-08-2018 0
Post-Randomization 07-08-2018 00:07 162 06-08-2018 0
Post-Randomization 07-08-2018 00:12 163 06-08-2018 0
Post-Randomization 07-08-2018 00:17 163 06-08-2018 0
Post-Randomization 07-08-2018 00:22 164 06-08-2018 0
Post-Randomization 07-08-2018 00:27 163 06-08-2018 0
Post-Randomization 07-08-2018 00:32 161 06-08-2018 0
Post-Randomization 07-08-2018 00:37 161 06-08-2018 0
Post-Randomization 07-08-2018 00:42 162 06-08-2018 0
Post-Randomization 07-08-2018 00:47 164 06-08-2018 0
Post-Randomization 07-08-2018 00:52 165 06-08-2018 0
Post-Randomization 07-08-2018 00:57 169 06-08-2018 0
Post-Randomization 07-08-2018 01:02 177 06-08-2018 1
Post-Randomization 07-08-2018 01:07 183 06-08-2018 1
Post-Randomization 07-08-2018 01:12 188 06-08-2018 1
Post-Randomization 07-08-2018 01:17 191 06-08-2018 1
Post-Randomization 07-08-2018 01:22 194 06-08-2018 1
Post-Randomization 07-08-2018 01:27 196 06-08-2018 1
Post-Randomization 07-08-2018 01:32 194 06-08-2018 1
Post-Randomization 07-08-2018 01:37 190 06-08-2018 1
Post-Randomization 07-08-2018 01:42 187 06-08-2018 1
Post-Randomization 07-08-2018 01:47 185 06-08-2018 1
Post-Randomization 07-08-2018 01:52 181 06-08-2018 1
Post-Randomization 07-08-2018 01:57 175 06-08-2018 1
Post-Randomization 07-08-2018 02:02 177 06-08-2018 2
Post-Randomization 07-08-2018 02:07 178 06-08-2018 2
Post-Randomization 07-08-2018 02:12 179 06-08-2018 2
Post-Randomization 07-08-2018 02:17 179 06-08-2018 2
Post-Randomization 07-08-2018 02:22 178 06-08-2018 2
Post-Randomization 07-08-2018 02:27 178 06-08-2018 2
Post-Randomization 07-08-2018 02:32 178 06-08-2018 2
Post-Randomization 07-08-2018 02:37 177 06-08-2018 2
Post-Randomization 07-08-2018 02:42 168 06-08-2018 2
Post-Randomization 07-08-2018 02:47 164 06-08-2018 2
Post-Randomization 07-08-2018 02:52 162 06-08-2018 2
Post-Randomization 07-08-2018 02:57 166 06-08-2018 2
Post-Randomization 07-08-2018 03:02 168 06-08-2018 3
Post-Randomization 07-08-2018 03:07 167 06-08-2018 3
Post-Randomization 07-08-2018 03:12 166 06-08-2018 3
Post-Randomization 07-08-2018 03:17 164 06-08-2018 3
Post-Randomization 07-08-2018 03:22 162 06-08-2018 3
Post-Randomization 07-08-2018 03:27 154 06-08-2018 3
Post-Randomization 07-08-2018 03:32 154 06-08-2018 3
Post-Randomization 07-08-2018 03:37 157 06-08-2018 3
Post-Randomization 07-08-2018 03:42 159 06-08-2018 3
Post-Randomization 07-08-2018 03:47 160 06-08-2018 3
Post-Randomization 07-08-2018 03:52 161 06-08-2018 3
Post-Randomization 07-08-2018 03:57 161 06-08-2018 3
Post-Randomization 07-08-2018 04:02 161 06-08-2018 4
Post-Randomization 07-08-2018 04:07 162 06-08-2018 4
Post-Randomization 07-08-2018 04:12 163 06-08-2018 4
Post-Randomization 07-08-2018 04:17 161 06-08-2018 4
Post-Randomization 07-08-2018 04:22 160 06-08-2018 4
Post-Randomization 07-08-2018 04:27 159 06-08-2018 4
Post-Randomization 07-08-2018 04:32 158 06-08-2018 4
Post-Randomization 07-08-2018 04:37 156 06-08-2018 4
Post-Randomization 07-08-2018 04:42 155 06-08-2018 4
Post-Randomization 07-08-2018 04:47 157 06-08-2018 4
Post-Randomization 07-08-2018 04:52 155 06-08-2018 4
Post-Randomization 07-08-2018 04:57 149 06-08-2018 4
Post-Randomization 07-08-2018 05:02 146 06-08-2018 5
Post-Randomization 07-08-2018 05:07 142 06-08-2018 5
Post-Randomization 07-08-2018 05:12 141 06-08-2018 5
Post-Randomization 07-08-2018 05:17 144 06-08-2018 5
Post-Randomization 07-08-2018 05:22 145 06-08-2018 5
Post-Randomization 07-08-2018 05:27 141 06-08-2018 5
Post-Randomization 07-08-2018 05:32 138 07-08-2018 5
Post-Randomization 07-08-2018 05:37 135 07-08-2018 5
Post-Randomization 07-08-2018 05:42 133 07-08-2018 5
Post-Randomization 07-08-2018 05:47 131 07-08-2018 5
Post-Randomization 07-08-2018 05:52 131 07-08-2018 5
Post-Randomization 07-08-2018 05:57 130 07-08-2018 5
Post-Randomization 07-08-2018 06:02 130 07-08-2018 6
Post-Randomization 07-08-2018 06:07 128 07-08-2018 6
Post-Randomization 07-08-2018 06:12 128 07-08-2018 6
Post-Randomization 07-08-2018 06:32 129 07-08-2018 6
Post-Randomization 07-08-2018 06:47 134 07-08-2018 6
Post-Randomization 07-08-2018 06:57 145 07-08-2018 6
Post-Randomization 07-08-2018 07:02 144 07-08-2018 7
Post-Randomization 07-08-2018 07:07 144 07-08-2018 7
Post-Randomization 07-08-2018 07:22 184 07-08-2018 7
Post-Randomization 07-08-2018 07:27 198 07-08-2018 7
Post-Randomization 07-08-2018 07:37 208 07-08-2018 7
Post-Randomization 07-08-2018 07:42 226 07-08-2018 7
Post-Randomization 07-08-2018 07:47 267 07-08-2018 7
Post-Randomization 07-08-2018 07:52 297 07-08-2018 7
Post-Randomization 07-08-2018 07:57 300 07-08-2018 7
Post-Randomization 07-08-2018 08:02 304 07-08-2018 8
Post-Randomization 07-08-2018 08:07 309 07-08-2018 8
Post-Randomization 07-08-2018 08:12 319 07-08-2018 8
Post-Randomization 07-08-2018 08:17 301 07-08-2018 8
Post-Randomization 07-08-2018 08:22 284 07-08-2018 8
Post-Randomization 07-08-2018 17:27 209 07-08-2018 17
Post-Randomization 07-08-2018 21:27 253 07-08-2018 21
Post-Randomization 07-08-2018 21:32 252 07-08-2018 21
Post-Randomization 07-08-2018 21:37 255 07-08-2018 21
Post-Randomization 07-08-2018 21:42 260 07-08-2018 21
Post-Randomization 07-08-2018 21:47 262 07-08-2018 21
Post-Randomization 07-08-2018 21:52 263 07-08-2018 21
Post-Randomization 07-08-2018 21:57 263 07-08-2018 21
Post-Randomization 07-08-2018 22:02 259 07-08-2018 22
Post-Randomization 07-08-2018 22:07 259 07-08-2018 22
Post-Randomization 07-08-2018 22:12 260 07-08-2018 22
Post-Randomization 07-08-2018 22:17 252 07-08-2018 22
Post-Randomization 07-08-2018 22:22 247 07-08-2018 22
Post-Randomization 07-08-2018 22:27 247 07-08-2018 22
Post-Randomization 07-08-2018 22:32 248 07-08-2018 22
Post-Randomization 07-08-2018 22:37 251 07-08-2018 22
Post-Randomization 07-08-2018 22:42 250 07-08-2018 22
Post-Randomization 07-08-2018 22:57 239 07-08-2018 22
Post-Randomization 07-08-2018 23:07 246 07-08-2018 23
Post-Randomization 07-08-2018 23:12 248 07-08-2018 23
Post-Randomization 07-08-2018 23:47 261 07-08-2018 23
Post-Randomization 07-08-2018 23:52 255 07-08-2018 23
Post-Randomization 07-08-2018 23:57 256 07-08-2018 23
Post-Randomization 08-08-2018 00:02 257 07-08-2018 0
Post-Randomization 08-08-2018 00:07 258 07-08-2018 0
Post-Randomization 08-08-2018 00:27 281 07-08-2018 0
Post-Randomization 08-08-2018 00:32 286 07-08-2018 0
Post-Randomization 08-08-2018 00:37 288 07-08-2018 0
Post-Randomization 08-08-2018 00:42 290 07-08-2018 0
Post-Randomization 08-08-2018 00:47 286 07-08-2018 0
Post-Randomization 08-08-2018 00:52 287 07-08-2018 0
Post-Randomization 08-08-2018 00:57 287 07-08-2018 0
Post-Randomization 08-08-2018 01:02 288 07-08-2018 1
Post-Randomization 08-08-2018 01:07 290 07-08-2018 1
Post-Randomization 08-08-2018 01:12 288 07-08-2018 1
Post-Randomization 08-08-2018 01:17 289 07-08-2018 1
Post-Randomization 08-08-2018 01:22 291 07-08-2018 1
Post-Randomization 08-08-2018 01:26 294 07-08-2018 1
Post-Randomization 08-08-2018 01:31 293 07-08-2018 1
Post-Randomization 08-08-2018 01:36 291 07-08-2018 1
Post-Randomization 08-08-2018 01:41 288 07-08-2018 1
Post-Randomization 08-08-2018 01:47 287 07-08-2018 1
Post-Randomization 08-08-2018 02:07 296 07-08-2018 2
Post-Randomization 08-08-2018 02:12 296 07-08-2018 2
this is my 'result_data '
It's the original data that would be helpful — the results don't allow folks to follow the chain of events that leads to the results.
We need the output of dput() not just a listing of the data. The dput() function gives us an exact copy of your R data set.
Here is a very simple example of how to do it.
dat <- data.frame(xx = 1:10, yy = letters[1:10])
dput(dat)
This gives us
structure(list(xx = 1:10, yy = c("a", "b", "c", "d", "e", "f",
"g", "h", "i", "j")), class = "data.frame", row.names = c(NA, -10L))
We can then copy it into R
dat <- data.frame(xx = 1:10, yy = letters[1:10])
my_dat <- structure(list(xx = 1:10, yy = c("a", "b", "c", "d", "e", "f",
"g", "h", "i", "j")), class = "data.frame", row.names = c(NA, -10L))
and we have an exact copy of your code and data.
sorry ..my file contains around 10 Laks data
If you put row numbers on to your filtered data, you shpuld be able to find a relevant row that is problematic in result. It would only take one row to solve this (probwbly)
Yes, that is a little big to post here. I think @ nirgrahamuk's approach makes sense but to supply some sample data
dput(head(mydata, 500))
probably would give us enough to let us get a feel for the data.
I agree, and to get started, even the output of dput(head(data))
would help folks get a sense of things, and you could always share a larger table later, @sql .
as far as I can tell, the code works as expected, I've added some code that generates some fake data that shows that the codes does what it should do.
I've also added a line that shows how to generate a sample of your dataset that migt give us some idea of what your data looks like.
library(magrittr)
library(dplyr)
data = data.frame(
Date_Time = seq(
as.POSIXct("2018-04-08, 00:00:00", tz = "UTC"),
as.POSIXct("2018-08-08, 11:59:59", tz = "UTC"),
by = 3600),
CGM_Value = sample(c(runif(5, 0, 100), Inf, -Inf), 2929, replace = TRUE)
)
# give me 20 random rows of data
dput(data[sample(nrow(data), 20), ])
# the following seems to work as expected
valid_data <- data[is.finite(data$CGM_Value), ]
last_date <- max(valid_data$Date_Time, na.rm = TRUE)
print(last_date)
start_date <- last_date - 4*24*60*60 # 4 days in seconds
print(start_date)
filtered_data <- subset(valid_data, Date_Time >= start_date & Date_Time <= last_date)
print(range(filtered_data$Date_Time))
result_data <- filtered_data %>%
mutate(Date = as.Date(Date_Time), Hour = as.numeric(format(Date_Time, "%H"))) %>%
group_by(Date, Hour)
structure(list(SID = c("DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001", "DCLP1-001-001",
"DCLP1-001-001"), Period = c("Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline", "Baseline",
"Baseline", "Baseline", "Baseline", "Baseline", "Baseline"),
Date_Time = c("2017-11-02 23:58:00", "2017-11-03 00:03:00",
"2017-11-03 00:08:00", "2017-11-03 00:13:00", "2017-11-03 00:18:00",
"2017-11-03 00:23:00", "2017-11-03 00:28:00", "2017-11-03 00:33:00",
"2017-11-03 00:38:00", "2017-11-03 00:43:00", "2017-11-03 00:48:00",
"2017-11-03 00:53:00", "2017-11-03 00:58:00", "2017-11-03 01:03:00",
"2017-11-03 01:08:00", "2017-11-03 01:13:00", "2017-11-03 01:18:00",
"2017-11-03 01:23:00", "2017-11-03 01:28:00", "2017-11-03 01:33:00",
"2017-11-03 01:38:00", "2017-11-03 01:43:00", "2017-11-03 01:48:00",
"2017-11-03 01:53:00", "2017-11-03 01:58:00", "2017-11-03 02:03:00",
"2017-11-03 02:08:00", "2017-11-03 02:13:00", "2017-11-03 02:18:00",
"2017-11-03 02:23:00", "2017-11-03 02:28:00", "2017-11-03 02:33:00",
"2017-11-03 02:38:00", "2017-11-03 02:43:00", "2017-11-03 02:48:00",
"2017-11-03 02:53:00", "2017-11-03 02:58:00", "2017-11-03 03:03:00",
"2017-11-03 03:08:00", "2017-11-03 03:13:00", "2017-11-03 03:18:00",
"2017-11-03 03:23:00", "2017-11-03 03:28:00", "2017-11-03 03:33:00",
"2017-11-03 03:38:00", "2017-11-03 03:43:00", "2017-11-03 03:48:00",
"2017-11-03 03:53:00", "2017-11-03 03:58:00", "2017-11-03 04:03:00",
"2017-11-03 04:08:00", "2017-11-03 04:13:00", "2017-11-03 04:18:00",
"2017-11-03 04:23:00", "2017-11-03 04:28:00", "2017-11-03 04:33:00",
"2017-11-03 04:38:00", "2017-11-03 04:43:00", "2017-11-03 04:48:00",
"2017-11-03 04:53:00", "2017-11-03 04:58:00", "2017-11-03 05:03:00",
"2017-11-03 05:08:00", "2017-11-03 05:13:00", "2017-11-03 05:18:00",
"2017-11-03 05:23:00", "2017-11-03 05:28:00", "2017-11-03 05:33:00",
"2017-11-03 05:38:00", "2017-11-03 05:43:00", "2017-11-03 05:48:00",
"2017-11-03 05:53:00", "2017-11-03 05:58:00", "2017-11-03 06:03:00",
"2017-11-03 06:08:00", "2017-11-03 06:13:00", "2017-11-03 06:18:00",
"2017-11-03 06:23:00", "2017-11-03 06:28:00", "2017-11-03 06:33:00",
"2017-11-03 06:38:00", "2017-11-03 06:43:00", "2017-11-03 06:48:00",
"2017-11-03 06:58:00", "2017-11-03 07:03:00", "2017-11-03 07:08:00",
"2017-11-03 07:13:00", "2017-11-03 07:18:00", "2017-11-03 07:23:00",
"2017-11-03 07:28:00", "2017-11-03 07:33:00", "2017-11-03 07:38:00",
"2017-11-03 07:43:00", "2017-11-03 07:48:00", "2017-11-03 07:53:00",
"2017-11-03 07:58:00", "2017-11-03 08:03:00", "2017-11-03 08:08:00",
"2017-11-03 08:13:00", "2017-11-03 08:18:00", "2017-11-03 08:23:00",
"2017-11-03 08:28:00", "2017-11-03 08:33:00", "2017-11-03 08:38:00",
"2017-11-03 08:43:00", "2017-11-03 08:48:00", "2017-11-03 08:53:00",
"2017-11-03 08:58:00", "2017-11-03 09:03:00", "2017-11-03 09:08:00",
"2017-11-03 09:13:00", "2017-11-03 09:18:00", "2017-11-03 09:23:00",
"2017-11-03 09:28:00", "2017-11-03 09:33:00", "2017-11-03 09:38:00",
"2017-11-03 09:43:00", "2017-11-03 09:48:00", "2017-11-03 09:53:00",
"2017-11-03 09:58:00", "2017-11-03 10:03:00", "2017-11-03 10:08:00",
"2017-11-03 10:13:00", "2017-11-03 10:18:00", "2017-11-03 10:23:00",
"2017-11-03 10:28:00", "2017-11-03 10:33:00", "2017-11-03 10:38:00",
"2017-11-03 10:43:00", "2017-11-03 10:48:00", "2017-11-03 10:53:00",
"2017-11-03 10:58:00", "2017-11-03 11:03:00", "2017-11-03 11:08:00",
"2017-11-03 11:13:00", "2017-11-03 11:18:00", "2017-11-03 11:23:00",
"2017-11-03 11:28:00", "2017-11-03 11:33:00", "2017-11-03 11:38:00",
"2017-11-03 11:43:00", "2017-11-03 11:48:00", "2017-11-03 11:53:00",
"2017-11-03 11:58:00", "2017-11-03 12:03:00", "2017-11-03 12:08:00",
"2017-11-03 12:13:00", "2017-11-03 12:18:00", "2017-11-03 12:23:00",
"2017-11-03 12:28:00", "2017-11-03 12:33:00", "2017-11-03 12:38:00",
"2017-11-03 12:43:00", "2017-11-03 16:13:00", "2017-11-03 16:18:00",
"2017-11-03 16:23:00", "2017-11-03 16:28:00", "2017-11-03 16:33:00",
"2017-11-03 16:38:00", "2017-11-03 16:43:00", "2017-11-03 16:48:00",
"2017-11-03 16:53:00", "2017-11-03 16:58:00", "2017-11-03 17:03:00",
"2017-11-03 17:08:00", "2017-11-03 17:13:00", "2017-11-03 17:18:00",
"2017-11-03 17:23:00", "2017-11-03 17:28:00", "2017-11-03 17:33:00",
"2017-11-03 17:38:00", "2017-11-03 17:43:00", "2017-11-03 17:48:00",
"2017-11-03 17:53:00", "2017-11-03 17:58:00", "2017-11-03 18:03:00",
"2017-11-03 18:08:00", "2017-11-03 18:13:00", "2017-11-03 18:18:00",
"2017-11-03 18:23:00", "2017-11-03 18:28:00", "2017-11-03 18:33:00",
"2017-11-03 18:38:00", "2017-11-03 18:43:00", "2017-11-03 18:48:00",
"2017-11-03 18:53:00", "2017-11-03 18:58:00", "2017-11-03 19:03:00",
"2017-11-03 19:08:00", "2017-11-03 19:13:00", "2017-11-03 19:18:00",
"2017-11-03 19:23:00", "2017-11-03 19:28:00", "2017-11-03 19:33:00",
"2017-11-03 19:38:00", "2017-11-03 19:43:00", "2017-11-03 19:48:00",
"2017-11-03 19:53:00", "2017-11-03 19:58:00", "2017-11-03 20:03:00",
"2017-11-03 20:08:00", "2017-11-03 20:13:00", "2017-11-03 20:18:00",
"2017-11-03 20:23:00", "2017-11-03 20:28:00", "2017-11-03 20:33:00",
"2017-11-03 20:38:00", "2017-11-03 20:43:00", "2017-11-03 20:48:00",
"2017-11-03 20:53:00", "2017-11-03 20:58:00", "2017-11-03 21:03:00",
"2017-11-03 21:08:00", "2017-11-03 21:13:00", "2017-11-03 21:18:00",
"2017-11-03 21:23:00", "2017-11-03 21:28:00", "2017-11-03 21:33:00",
"2017-11-03 21:38:00", "2017-11-03 21:43:00", "2017-11-03 21:48:00",
"2017-11-03 21:53:00", "2017-11-03 21:58:00", "2017-11-03 22:03:00",
"2017-11-03 22:08:00", "2017-11-03 22:13:00", "2017-11-03 22:18:00",
"2017-11-03 22:23:00", "2017-11-03 22:28:00", "2017-11-03 22:33:00",
"2017-11-03 22:38:00", "2017-11-03 22:43:00", "2017-11-03 22:48:00",
"2017-11-03 22:53:00", "2017-11-03 22:58:00", "2017-11-03 23:03:00",
"2017-11-03 23:08:00", "2017-11-03 23:13:00", "2017-11-03 23:18:00",
"2017-11-03 23:23:00", "2017-11-03 23:28:00", "2017-11-03 23:33:00",
"2017-11-03 23:38:00", "2017-11-03 23:43:00", "2017-11-03 23:48:00",
"2017-11-03 23:53:00", "2017-11-03 23:58:00", "2017-11-04 00:03:00",
"2017-11-04 00:08:00", "2017-11-04 00:13:00", "2017-11-04 00:18:00",
"2017-11-04 00:23:00", "2017-11-04 00:28:00", "2017-11-04 00:33:00",
"2017-11-04 00:38:00", "2017-11-04 00:43:00", "2017-11-04 00:48:00",
"2017-11-04 00:53:00", "2017-11-04 00:58:00", "2017-11-04 01:03:00",
"2017-11-04 01:08:00", "2017-11-04 01:13:00", "2017-11-04 01:18:00",
"2017-11-04 01:23:00", "2017-11-04 01:28:00", "2017-11-04 01:33:00",
"2017-11-04 01:38:00", "2017-11-04 01:43:00", "2017-11-04 01:48:00",
"2017-11-04 01:53:00", "2017-11-04 01:58:00", "2017-11-04 02:03:00",
"2017-11-04 02:08:00", "2017-11-04 02:13:00", "2017-11-04 02:18:00",
"2017-11-04 02:23:00", "2017-11-04 02:28:00", "2017-11-04 02:33:00",
"2017-11-04 02:38:00", "2017-11-04 02:43:00", "2017-11-04 02:48:00",
"2017-11-04 02:53:00", "2017-11-04 02:58:00", "2017-11-04 03:03:00",
"2017-11-04 03:08:00", "2017-11-04 03:13:00", "2017-11-04 03:18:00",
"2017-11-04 03:23:00", "2017-11-04 03:28:00", "2017-11-04 03:33:00",
"2017-11-04 03:38:00", "2017-11-04 03:43:00", "2017-11-04 03:48:00",
"2017-11-04 03:53:00", "2017-11-04 03:58:00", "2017-11-04 04:03:00",
"2017-11-04 04:08:00", "2017-11-04 04:13:00", "2017-11-04 04:18:00",
"2017-11-04 04:23:00", "2017-11-04 04:28:00", "2017-11-04 04:33:00",
"2017-11-04 04:38:00", "2017-11-04 04:43:00", "2017-11-04 04:48:00",
"2017-11-04 04:53:00", "2017-11-04 04:58:00", "2017-11-04 05:03:00",
"2017-11-04 05:08:00", "2017-11-04 05:13:00", "2017-11-04 05:18:00",
"2017-11-04 05:23:00", "2017-11-04 05:28:00", "2017-11-04 05:33:00",
"2017-11-04 05:38:00", "2017-11-04 05:43:00", "2017-11-04 05:48:00",
"2017-11-04 05:53:00", "2017-11-04 05:58:00", "2017-11-04 06:03:00",
"2017-11-04 06:08:00", "2017-11-04 06:13:00", "2017-11-04 06:18:00",
"2017-11-04 06:23:00", "2017-11-04 06:28:00", "2017-11-04 06:33:00",
"2017-11-04 06:38:00", "2017-11-04 06:48:00", "2017-11-04 06:53:00",
"2017-11-04 06:58:00", "2017-11-04 07:03:00", "2017-11-04 07:08:00",
"2017-11-04 07:13:00", "2017-11-04 07:18:00", "2017-11-04 07:23:00",
"2017-11-04 07:28:00", "2017-11-04 07:33:00", "2017-11-04 07:38:00",
"2017-11-04 07:43:00", "2017-11-04 07:48:00", "2017-11-04 07:53:00",
"2017-11-04 07:58:00", "2017-11-04 08:03:00", "2017-11-04 08:08:00",
"2017-11-04 08:13:00", "2017-11-04 08:18:00", "2017-11-04 08:23:00",
"2017-11-04 08:28:00", "2017-11-04 08:33:00", "2017-11-04 08:38:00",
"2017-11-04 08:43:00", "2017-11-04 08:48:00", "2017-11-04 08:53:00",
"2017-11-04 08:58:00", "2017-11-04 09:03:00", "2017-11-04 09:08:00",
"2017-11-04 09:13:00", "2017-11-04 09:18:00", "2017-11-04 09:23:00",
"2017-11-04 09:28:00", "2017-11-04 09:33:00", "2017-11-04 09:38:00",
"2017-11-04 09:43:00", "2017-11-04 09:48:00", "2017-11-04 09:53:00",
"2017-11-04 09:58:00", "2017-11-04 10:03:00", "2017-11-04 10:08:00",
"2017-11-04 10:13:00", "2017-11-04 10:18:00", "2017-11-04 10:23:00",
"2017-11-04 10:28:00", "2017-11-04 10:33:00", "2017-11-04 10:38:00",
"2017-11-04 10:43:00", "2017-11-04 10:48:00", "2017-11-04 10:53:00",
"2017-11-04 10:58:00", "2017-11-04 11:03:00", "2017-11-04 11:08:00",
"2017-11-04 11:13:00", "2017-11-04 11:18:00", "2017-11-04 11:23:00",
"2017-11-04 11:28:00", "2017-11-04 11:33:00", "2017-11-04 11:38:00",
"2017-11-04 11:43:00", "2017-11-04 11:48:00", "2017-11-04 11:53:00",
"2017-11-04 11:58:00", "2017-11-04 12:03:00", "2017-11-04 12:08:00",
"2017-11-04 12:13:00", "2017-11-04 12:18:00", "2017-11-04 12:23:00",
"2017-11-04 12:28:00", "2017-11-04 12:33:00", "2017-11-04 12:38:00",
"2017-11-04 12:43:00", "2017-11-04 12:48:00", "2017-11-04 12:53:00",
"2017-11-04 12:58:00", "2017-11-04 13:03:00", "2017-11-04 13:08:00",
"2017-11-04 13:13:00", "2017-11-04 13:18:00", "2017-11-04 13:23:00",
"2017-11-04 13:28:00", "2017-11-04 13:33:00", "2017-11-04 13:38:00",
"2017-11-04 13:43:00", "2017-11-04 13:48:00", "2017-11-04 13:53:00",
"2017-11-04 13:58:00", "2017-11-04 14:03:00", "2017-11-04 14:08:00",
"2017-11-04 14:13:00", "2017-11-04 14:18:00", "2017-11-04 14:23:00",
"2017-11-04 14:28:00", "2017-11-04 14:33:00", "2017-11-04 14:38:00",
"2017-11-04 14:43:00", "2017-11-04 14:48:00", "2017-11-04 14:53:00",
"2017-11-04 14:58:00", "2017-11-04 15:03:00", "2017-11-04 15:08:00",
"2017-11-04 15:13:00", "2017-11-04 15:18:00", "2017-11-04 15:23:00",
"2017-11-04 15:28:00", "2017-11-04 15:33:00", "2017-11-04 15:38:00",
"2017-11-04 15:43:00", "2017-11-04 15:48:00", "2017-11-04 15:53:00",
"2017-11-04 15:58:00", "2017-11-04 16:03:00", "2017-11-04 16:08:00",
"2017-11-04 16:13:00", "2017-11-04 16:18:00", "2017-11-04 16:23:00",
"2017-11-04 16:28:00", "2017-11-04 16:33:00", "2017-11-04 16:38:00",
"2017-11-04 16:43:00", "2017-11-04 16:48:00", "2017-11-04 16:53:00",
"2017-11-04 16:58:00", "2017-11-04 17:03:00", "2017-11-04 17:08:00",
"2017-11-04 17:13:00", "2017-11-04 17:18:00", "2017-11-04 17:23:00",
"2017-11-04 17:28:00", "2017-11-04 17:33:00", "2017-11-04 17:38:00",
"2017-11-04 17:43:00", "2017-11-04 17:48:00", "2017-11-04 17:53:00",
"2017-11-04 17:58:00", "2017-11-04 18:03:00", "2017-11-04 18:08:00",
"2017-11-04 18:13:00", "2017-11-04 18:18:00", "2017-11-04 18:23:00",
"2017-11-04 18:28:00", "2017-11-04 18:33:00", "2017-11-04 18:38:00",
"2017-11-04 18:43:00", "2017-11-04 18:48:00", "2017-11-04 18:53:00",
"2017-11-04 18:58:00", "2017-11-04 19:03:00", "2017-11-04 19:08:00",
"2017-11-04 19:13:00", "2017-11-04 19:18:00", "2017-11-04 19:23:00",
"2017-11-04 19:28:00", "2017-11-04 19:33:00", "2017-11-04 19:38:00",
"2017-11-04 19:43:00", "2017-11-04 19:48:00", "2017-11-04 19:53:00",
"2017-11-04 19:58:00", "2017-11-04 20:03:00", "2017-11-04 20:08:00",
"2017-11-04 20:13:00", "2017-11-04 20:18:00", "2017-11-04 20:23:00",
"2017-11-04 20:28:00", "2017-11-04 20:33:00", "2017-11-04 20:38:00",
"2017-11-04 20:43:00", "2017-11-04 20:48:00", "2017-11-04 20:53:00",
"2017-11-04 20:58:00", "2017-11-04 21:08:00", "2017-11-04 21:13:00"
), CGM_Value = c(108L, 118L, 124L, 125L, 123L, 121L, 120L,
119L, 120L, 122L, 127L, 132L, 139L, 145L, 152L, 157L, 162L,
165L, 169L, 173L, 177L, 182L, 187L, 190L, 191L, 192L, 193L,
198L, 204L, 207L, 202L, 203L, 208L, 210L, 214L, 215L, 217L,
218L, 219L, 218L, 220L, 220L, 218L, 218L, 216L, 215L, 213L,
211L, 210L, 208L, 206L, 204L, 202L, 199L, 195L, 192L, 188L,
185L, 180L, 175L, 172L, 170L, 168L, 166L, 164L, 162L, 161L,
162L, 163L, 163L, 163L, 160L, 159L, 159L, 153L, 155L, 159L,
160L, 163L, 160L, 156L, 155L, 155L, 162L, 161L, 160L, 160L,
158L, 170L, 166L, 179L, 192L, 198L, 192L, 180L, 167L, 156L,
147L, 141L, 138L, 139L, 141L, 143L, 144L, 147L, 146L, 144L,
143L, 142L, 139L, 134L, 130L, 126L, 122L, 119L, 117L, 118L,
122L, 130L, 138L, 140L, 142L, 144L, 145L, 147L, 145L, 144L,
143L, 140L, 137L, 137L, 134L, 134L, 130L, 128L, 126L, 123L,
120L, 118L, 116L, 113L, 109L, 108L, 105L, 102L, 98L, 95L,
93L, 90L, 88L, 87L, 86L, 83L, 103L, 100L, 104L, 102L, 101L,
99L, 98L, 99L, 100L, 104L, 104L, 104L, 103L, 102L, 102L,
103L, 104L, 105L, 106L, 107L, 106L, 106L, 103L, 98L, 94L,
91L, 88L, 87L, 87L, 86L, 85L, 84L, 86L, 89L, 91L, 97L, 104L,
112L, 118L, 123L, 129L, 137L, 141L, 146L, 152L, 159L, 164L,
167L, 174L, 181L, 185L, 189L, 195L, 206L, 213L, 219L, 225L,
232L, 236L, 242L, 245L, 245L, 246L, 249L, 251L, 251L, 249L,
243L, 246L, 238L, 227L, 215L, 204L, 195L, 186L, 167L, 171L,
168L, 169L, 173L, 179L, 182L, 180L, 175L, 169L, 163L, 159L,
156L, 147L, 143L, 139L, 135L, 133L, 129L, 126L, 123L, 119L,
115L, 112L, 108L, 106L, 103L, 102L, 100L, 99L, 102L, 104L,
106L, 107L, 108L, 108L, 109L, 109L, 110L, 109L, 109L, 109L,
109L, 108L, 105L, 105L, 104L, 100L, 99L, 98L, 97L, 96L, 97L,
96L, 95L, 98L, 100L, 102L, 103L, 104L, 106L, 109L, 112L,
114L, 117L, 120L, 123L, 126L, 128L, 130L, 129L, 130L, 136L,
136L, 135L, 135L, 136L, 141L, 136L, 137L, 138L, 139L, 139L,
138L, 137L, 139L, 139L, 138L, 137L, 136L, 136L, 135L, 134L,
131L, 130L, 129L, 128L, 126L, 124L, 151L, 147L, 144L, 143L,
141L, 140L, 138L, 137L, 134L, 133L, 136L, 140L, 146L, 147L,
141L, 129L, 118L, 110L, 106L, 103L, 101L, 100L, 101L, 99L,
97L, 95L, 95L, 96L, 95L, 92L, 94L, 93L, 91L, 90L, 90L, 92L,
94L, 96L, 97L, 97L, 98L, 100L, 101L, 102L, 103L, 104L, 113L,
121L, 127L, 130L, 135L, 138L, 139L, 140L, 142L, 138L, 138L,
136L, 133L, 131L, 130L, 128L, 128L, 127L, 127L, 127L, 124L,
119L, 118L, 116L, 112L, 107L, 103L, 100L, 99L, 97L, 97L,
100L, 103L, 104L, 111L, 122L, 114L, 119L, 122L, 125L, 129L,
132L, 129L, 127L, 126L, 121L, 116L, 113L, 113L, 113L, 113L,
112L, 114L, 118L, 123L, 127L, 134L, 133L, 140L, 144L, 142L,
142L, 141L, 139L, 135L, 134L, 131L, 133L, 134L, 133L, 129L,
125L, 129L, 128L, 130L, 132L, 132L, 131L, 128L, 124L, 124L,
122L, 120L, 119L, 120L, 122L, 122L, 125L, 126L, 126L, 127L,
127L, 126L, 126L, 126L, 127L, 125L, 124L, 126L, 122L, 121L,
118L, 114L, 109L, 109L, 105L, 102L, 103L, 106L, 108L, 105L,
106L, 106L, 107L, 110L, 112L, 113L, 116L, 120L, 120L, 120L,
118L, 122L, 121L, 125L, 199L, 210L)), row.names = c(NA, 500L
), class = "data.frame")
Maybe this is part of your problem. The as.Date() function defaults to calculating in the UTC timezone, but the data are in the local timezone after as.POSIXct(). I'm in the US Eastern timezone. The data
data frame in my code is the result of the dput() code in your last post.
data$Date_Time <- as.POSIXct(data$Date_Time, format = "%Y-%m-%d %H:%M:%S")
> data$Date_Time[500]
[1] "2017-11-04 21:13:00 EDT"
> as.Date(data$Date_Time[500]) #Date is shifted to UTC!!!
[1] "2017-11-05"
> as.Date(data$Date_Time[500], tz = "US/Eastern") #Specify the timezone
[1] "2017-11-04"
This may do what you want but I used {data.table} rather than {dplyr} so the syntax will look strange.
I called the data.frame you supplied dat1 .
suppressMessages(library(data.table)); suppressMessages(library(tidyverse))
DT <- as.data.table(dat1)
DT[, Date_Time := (ymd_hms(Date_Time))]
last <- DT[, max(Date_Time)]
start <- last - 42460*60 # 4 days in seconds
DT2 <- subset(DT, Date_Time <= last & Date_Time >= start)
DT2[, hhr := hour(Date_Time)]
setkey(DT2, Date_Time, hhr)
A couple of links that may help you see what I am doing.
data.table in R – The Complete Beginners Guide
OOPS, I forgot you were filtering the data. See new code below.
suppressMessages(library(data.table)); suppressMessages(library(tidyverse))
DT <- as.data.table(dat1)
DT <- na.omit(DT)
DT[, Date_Time := (ymd_hms(Date_Time))]
last <- DT[, max(Date_Time)]
start <- last - 42460*60 # 4 days in seconds
DT2 <- subset(DT, Date_Time <= last & Date_Time >= start)
DT2[, hhr := hour(Date_Time)]
setkey(DT2, Date_Time, hhr)
This topic was automatically closed 90 days after the last reply. New replies are no longer allowed.
If you have a query related to it or one of the replies, start a new topic and refer back with a link.