Shiny multi class classification

...hello everyone i am working on machine learning project.i am doing Multi class classification sing UBL package. when i tried

Hi, welcome!

To help us help you, could you please prepare a reproducible example (reprex) illustrating your issue? Please have a look at this guide, to see how to create one for a shiny app

1 Like

what is smotenew() and what have you done to guarantee that it looks like the rov1 in your original code that works in console ?

also it would be good to put req() around inputs to your downstream reactives* and renders* so that they dont try to run with missing inputs.

1 Like

smotenew() is original data set, i copied in rov .
can you elaborate about what are you trying to explain about req() for reactivve and render.

i tried and make it simple .


    #oversampling using UBL package 
 over_samp<-reactive({
   rov<-smotenew()
  RandOverClassif(ID ~ ., rov, C.perc="balance")
  over_samp
      })
    output$rob<-renderTable({
      over_samp()
    })

You haven't provided us code that we could even attempt to run so it's very hard to help you. Because we are just looking for odd things with our eyes....

This doesn't make sense. You wouldn't make a reactive and have it's return value be an unassigned matching name

over_samp<-reactive({ 
rov<-smotenew() 
RandOverClassif(ID ~ ., rov, C.perc="balance")  
})

If you want it to hold the value returned from RandOver... Then that should be the last statement in the reactive

i tried but still got same error

Hi, can you write the code, in the normal non-shiny way. (working)
I should be able to put it into shiny compatible form for you.

this is the non shiny working code.
rob<- RandOverClassif(ID~ ., rov, C.perc="balance")

Sorry but that's incomplete. I can't copy it to my RStudio IDE and run that. If you are unsure, open up a fresh RStudio and paste it in to test it.

1 Like

smote2 - Copy.csv.pdf (7.0 KB)
i have attached small part of my data base and also performed code for the same. Capture
for reference i am showing the part of R studio what i have done .

I can't copy and paste an image into Rstudio either...

Please try the dput() function

in the above f2 would represent rov ?

1 Like

f2<-read.csv("smote2 - Copy.csv")
str(f2)
m2<-RandOverClassif(id ~ ., f2, C.perc="balance")
str(m2)

Yes f2 represent rov.

thanks but can you try this and put the results in your next post:

f2<-read.csv("smote2 - Copy.csv")
dput(f2)

result of dput(f2)

structure(list(id = c(4L, 7L, 4L, 6L, 3L, 7L, 3L, 3L, 1L, 6L, 
3L, 7L, 3L, 10L, 4L, 6L, 3L, 3L, 7L, 8L, 7L, 8L, 7L, 6L, 10L, 
3L, 7L, 6L, 8L, 3L, 4L, 4L, 3L, 4L, 4L, 4L, 3L, 4L, 6L, 9L, 8L, 
7L, 4L, 7L, 4L, 7L, 4L, 10L, 3L, 10L, 8L, 3L, 6L, 7L, 3L, 4L, 
8L, 7L, 4L, 4L, 8L, 8L, 7L, 3L, 4L, 3L, 4L, 3L, 4L, 3L, 6L, 7L, 
5L, 8L, 8L, 6L, 7L, 8L, 3L, 4L, 3L, 7L, 4L, 3L, 3L, 2L, 4L, 7L, 
6L, 7L, 4L, 4L, 7L, 8L, 10L, 3L, 4L, 6L, 7L, 10L, 3L, 8L, 6L, 
3L, 3L, 3L, 3L, 10L, 4L, 3L, 3L, 4L, 3L, 4L, 4L, 1L, 8L, 3L, 
4L, 9L, 6L, 7L, 8L, 4L, 10L, 3L, 6L, 7L, 4L, 3L, 4L, 2L, 8L, 
7L, 8L, 8L, 9L, 3L, 7L, 3L, 4L, 3L, 7L, 3L, 8L, 6L, 3L, 7L, 4L, 
8L, 4L, 4L, 10L, 4L, 3L, 7L, 8L, 4L, 1L, 4L, 4L, 6L, 3L, 3L, 
8L, 4L, 7L, 7L, 8L, 8L, 3L, 3L, 3L, 4L, 10L, 8L, 3L, 6L, 7L, 
3L, 8L, 3L, 3L, 8L, 7L, 3L, 8L, 4L, 3L, 9L, 3L, 10L, 3L, 4L, 
8L, 3L, 6L, 4L, 6L, 4L, 4L, 4L, 6L, 7L, 4L, 7L, 4L, 9L, 9L, 4L, 
4L, 10L, 6L, 8L, 3L, 4L, 7L, 3L, 8L, 3L, 9L, 6L, 1L, 4L, 7L, 
4L, 7L, 4L, 6L, 4L, 4L, 3L, 8L, 6L, 4L, 3L, 4L, 3L, 6L, 3L, 8L, 
8L, 3L, 4L, 3L, 10L, 3L, 4L, 4L, 3L, 4L, 4L, 3L, 10L, 3L, 3L, 
4L, 4L, 4L, 8L, 3L, 3L, 4L, 4L, 6L, 3L, 10L, 3L, 4L, 8L, 4L, 
4L, 4L, 3L, 4L, 6L, 4L, 6L, 3L, 3L, 4L, 8L, 4L, 3L, 7L, 4L, 7L, 
4L, 3L, 8L, 3L, 4L, 6L, 4L, 4L, 3L, 3L, 8L, 4L, 7L, 6L, 6L, 4L, 
8L, 4L, 4L, 3L, 3L, 7L, 7L, 2L, 4L, 3L, 3L, 3L, 7L, 7L, 3L, 8L, 
3L, 4L, 3L, 4L, 8L, 8L, 7L, 4L, 8L, 7L, 3L, 6L, 8L, 4L, 4L, 3L, 
6L, 1L, 3L, 3L, 7L, 4L, 3L, 8L, 9L, 8L, 10L, 4L, 3L, 8L, 7L, 
9L, 3L, 3L, 4L, 8L, 3L, 3L, 8L, 4L, 3L, 4L, 7L, 7L, 7L, 8L, 7L, 
6L, 7L, 10L, 4L, 3L, 6L, 3L, 4L, 8L, 3L, 8L, 8L, 8L, 4L, 6L, 
10L, 3L, 3L, 7L, 6L, 4L, 4L, 3L, 7L, 8L, 8L, 6L, 4L, 3L, 7L, 
8L, 4L, 3L, 7L, 6L, 7L, 4L, 7L, 4L, 3L, 3L, 4L, 10L, 8L, 4L, 
4L, 4L, 4L, 7L, 8L, 4L, 4L, 7L, 6L, 4L, 4L, 3L, 4L, 4L, 7L, 4L, 
4L, 4L, 8L, 10L, 4L, 8L, 7L, 2L, 8L, 6L, 3L, 6L, 7L, 4L, 6L, 
3L, 4L, 3L, 3L, 6L, 4L, 6L, 3L, 8L, 4L, 7L, 3L, 9L, 8L, 3L, 3L, 
6L, 4L, 8L, 9L, 4L, 7L, 4L, 10L, 4L, 4L, 3L, 6L, 3L, 8L, 10L, 
7L, 3L, 1L, 4L, 3L, 4L, 3L, 1L, 8L, 3L, 6L, 8L, 3L, 3L, 3L, 7L, 
3L, 10L, 3L, 8L, 4L, 8L, 3L, 8L, 4L, 10L, 4L, 3L, 3L, 7L, 4L, 
7L, 4L, 7L, 3L, 6L, 8L, 2L, 6L, 4L, 5L), a = c(5L, 5L, 5L, 7L, 
5L, 5L, 7L, 5L, 5L, 5L, 5L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 9L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 15L, 
5L, 5L, 5L, 9L, 5L, 5L, 5L, 5L, 5L, 9L, 3L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 13L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 
7L, 7L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 
5L, 7L, 5L, 5L, 11L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 11L, 5L, 
7L, 5L, 5L, 5L, 9L, 5L, 3L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 
5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 7L, 5L, 0L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 13L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 7L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 
5L, 5L, 7L, 5L, 5L, 7L, 15L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 
5L, 5L, 5L, 5L, 7L, 13L, 5L, 5L, 5L, 7L, 5L, 5L, 3L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 15L, 
4L, 5L, 5L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 3L, 7L, 5L, 5L, 
5L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 7L, 7L, 
7L, 15L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 7L, 7L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 
5L, 11L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 9L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 11L, 5L, 5L, 5L, 3L, 
3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 
7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 7L, 5L, 5L, 15L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 13L, 3L, 5L, 7L, 5L, 7L, 7L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 5L, 7L, 5L, 
7L, 3L, 5L, 3L, 7L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 3L, 5L, 5L), b = c(39L, 52L, 265L, 697L, 337L, 
702L, 8L, 381L, 532L, 255L, 414L, 723L, 122L, 272L, 350L, 200L, 
367L, 330L, 152L, 457L, 194L, 247L, 1386L, 0L, 638L, 16L, 277L, 
271L, 722L, 81L, 265L, 1330L, 560L, 108L, 367L, 30L, 239L, 218L, 
36L, 73L, 141L, 39L, 378L, 226L, 719L, 33L, 73L, 78L, 395L, 59L, 
146L, 3L, 16L, 492L, 774L, 1627L, 285L, 65L, 83L, 58L, 74L, 273L, 
1675L, 520L, 80L, 26L, 83L, 391L, 346L, 89L, 169L, 814L, 75L, 
321L, 65L, 482L, 2020L, 339L, 346L, 56L, 295L, 567L, 354L, 281L, 
789L, 839L, 328L, 13L, 555L, 111L, 51L, 135L, 67L, 67L, 166L, 
178L, 287L, 1503L, 120L, 57L, 137L, 593L, 211L, 1059L, 177L, 
483L, 73L, 216L, 180L, 454L, 87L, 181L, 54L, 975L, 470L, 704L, 
205L, 419L, 487L, 187L, 911L, 315L, 542L, 874L, 553L, 44L, 587L, 
138L, 507L, 185L, 435L, 123L, 192L, 121L, 676L, 46L, 352L, 406L, 
210L, 219L, 56L, 122L, 8L, 96L, 45L, 43L, 1223L, 120L, 336L, 
274L, 658L, 670L, 627L, 319L, 1270L, 91L, 158L, 556L, 341L, 1070L, 
561L, 284L, 209L, 365L, 119L, 250L, 0L, 959L, 361L, 597L, 941L, 
673L, 128L, 303L, 4L, 1L, 46L, 227L, 200L, 73L, 428L, 75L, 141L, 
105L, 13L, 74L, 370L, 429L, 139L, 307L, 145L, 101L, 28L, 174L, 
517L, 1190L, 491L, 123L, 579L, 169L, 1238L, 396L, 158L, 89L, 
1310L, 223L, 373L, 182L, 295L, 31L, 107L, 65L, 328L, 584L, 417L, 
332L, 1669L, 936L, 160L, 455L, 589L, 1016L, 0L, 78L, 682L, 648L, 
243L, 263L, 37L, 108L, 1215L, 189L, 209L, 1222L, 166L, 123L, 
445L, 97L, 379L, 58L, 159L, 199L, 576L, 457L, 94L, 78L, 148L, 
232L, 38L, 292L, 63L, 398L, 406L, 235L, 1294L, 329L, 144L, 231L, 
40L, 73L, 210L, 47L, 587L, 853L, 53L, 252L, 71L, 256L, 828L, 
111L, 140L, 353L, 365L, 107L, 862L, 467L, 349L, 1325L, 38L, 252L, 
496L, 57L, 39L, 1645L, 156L, 20L, 47L, 112L, 19L, 991L, 390L, 
295L, 129L, 175L, 0L, 58L, 144L, 890L, 46L, 672L, 188L, 183L, 
934L, 153L, 1604L, 458L, 58L, 512L, 500L, 133L, 72L, 152L, 58L, 
114L, 738L, 236L, 388L, 188L, 305L, 248L, 890L, 109L, 128L, 244L, 
19L, 280L, 679L, 450L, 461L, 68L, 532L, 48L, 30L, 262L, 433L, 
118L, 352L, 101L, 67L, 275L, 430L, 50L, 576L, 867L, 327L, 234L, 
156L, 1405L, 107L, 419L, 162L, 232L, 42L, 96L, 345L, 372L, 220L, 
143L, 244L, 302L, 682L, 75L, 184L, 95L, 77L, 1098L, 81L, 160L, 
148L, 1621L, 336L, 431L, 113L, 112L, 627L, 191L, 457L, 710L, 
232L, 77L, 626L, 625L, 898L, 675L, 1131L, 228L, 145L, 70L, 248L, 
800L, 260L, 46L, 190L, 50L, 409L, 29L, 174L, 45L, 68L, 432L, 
66L, 156L, 294L, 1104L, 49L, 642L, 131L, 44L, 67L, 87L, 1132L, 
160L, 214L, 269L, 276L, 631L, 105L, 348L, 95L, 56L, 293L, 319L, 
272L, 728L, 370L, 26L, 179L, 681L, 382L, 210L, 59L, 210L, 845L, 
37L, 418L, 537L, 347L, 145L, 636L, 565L, 487L, 1779L, 371L, 542L, 
185L, 157L, 565L, 585L, 554L, 713L, 99L, 481L, 35L, 149L, 244L, 
162L, 172L, 464L, 222L, 1905L, 562L, 172L, 162L, 278L, 173L, 
273L, 40L, 751L, 38L, 83L, 174L, 72L, 980L, 736L, 922L, 108L, 
110L, 1686L, 360L, 71L, 301L, 195L, 684L, 367L, 102L, 485L, 285L, 
543L, 365L, 266L, 404L, 179L, 1267L, 244L, 337L, 470L, 720L, 
434L, 359L, 156L, 312L, 422L, 133L, 577L, 157L, 214L, 598L, 111L, 
469L, 246L, 936L, 48L, 140L, 75L), c = c(59L, 74L, 65L, 76L, 
75L, 66L, 60L, 74L, 65L, 64L, 65L, 73L, 72L, 70L, 65L, 59L, 72L, 
67L, 59L, 71L, 69L, 74L, 54L, 48L, 61L, 67L, 71L, 65L, 70L, 42L, 
68L, 53L, 63L, 65L, 51L, 65L, 77L, 65L, 64L, 60L, 75L, 72L, 74L, 
74L, 66L, 65L, 79L, 63L, 61L, 70L, 58L, 68L, 79L, 59L, 62L, 68L, 
76L, 71L, 81L, 71L, 65L, 78L, 56L, 50L, 63L, 65L, 72L, 79L, 59L, 
72L, 56L, 70L, 64L, 74L, 45L, 63L, 62L, 72L, 70L, 68L, 60L, 46L, 
51L, 70L, 73L, 41L, 69L, 65L, 59L, 59L, 59L, 84L, 51L, 53L, 75L, 
68L, 64L, 78L, 50L, 61L, 72L, 71L, 67L, 60L, 52L, 76L, 67L, 74L, 
77L, 81L, 69L, 72L, 69L, 72L, 85L, 56L, 77L, 72L, 74L, 51L, 59L, 
69L, 87L, 54L, 51L, 45L, 75L, 68L, 60L, 84L, 80L, 55L, 62L, 74L, 
51L, 70L, 76L, 74L, 65L, 74L, 66L, 86L, 77L, 69L, 60L, 75L, 63L, 
68L, 66L, 66L, 77L, 61L, 42L, 72L, 69L, 73L, 68L, 65L, 57L, 51L, 
58L, 70L, 65L, 38L, 76L, 65L, 77L, 65L, 56L, 58L, 88L, 39L, 75L, 
65L, 49L, 59L, 61L, 73L, 61L, 75L, 61L, 63L, 77L, 74L, 58L, 70L, 
49L, 74L, 67L, 76L, 58L, 71L, 66L, 60L, 61L, 53L, 71L, 64L, 62L, 
75L, 55L, 55L, 56L, 53L, 44L, 69L, 75L, 72L, 59L, 60L, 76L, 41L, 
72L, 54L, 70L, 75L, 81L, 56L, 66L, 75L, 72L, 73L, 71L, 48L, 75L, 
73L, 62L, 78L, 65L, 82L, 62L, 72L, 52L, 47L, 65L, 80L, 65L, 75L, 
50L, 71L, 66L, 74L, 73L, 72L, 61L, 64L, 76L, 65L, 55L, 59L, 65L, 
67L, 76L, 52L, 77L, 64L, 73L, 81L, 65L, 78L, 52L, 61L, 52L, 58L, 
54L, 60L, 81L, 65L, 54L, 55L, 76L, 71L, 41L, 81L, 72L, 69L, 70L, 
77L, 74L, 69L, 52L, 69L, 66L, 51L, 64L, 80L, 55L, 60L, 65L, 53L, 
69L, 64L, 67L, 67L, 62L, 70L, 70L, 81L, 82L, 68L, 70L, 56L, 64L, 
82L, 58L, 56L, 52L, 69L, 65L, 65L, 84L, 65L, 58L, 72L, 50L, 55L, 
59L, 64L, 71L, 61L, 59L, 71L, 52L, 77L, 65L, 84L, 58L, 79L, 68L, 
75L, 58L, 54L, 75L, 87L, 78L, 45L, 69L, 73L, 69L, 65L, 54L, 80L, 
72L, 47L, 64L, 66L, 73L, 56L, 67L, 67L, 72L, 77L, 57L, 78L, 69L, 
62L, 72L, 42L, 65L, 71L, 52L, 70L, 65L, 80L, 73L, 41L, 62L, 65L, 
57L, 71L, 76L, 76L, 75L, 59L, 79L, 65L, 55L, 59L, 68L, 67L, 46L, 
60L, 71L, 60L, 65L, 60L, 69L, 79L, 64L, 61L, 68L, 49L, 65L, 65L, 
73L, 72L, 67L, 70L, 72L, 56L, 52L, 69L, 76L, 61L, 63L, 67L, 62L, 
43L, 63L, 59L, 65L, 84L, 67L, 76L, 61L, 62L, 85L, 72L, 75L, 79L, 
61L, 42L, 70L, 58L, 62L, 65L, 42L, 57L, 73L, 67L, 67L, 54L, 65L, 
70L, 48L, 83L, 70L, 60L, 63L, 49L, 54L, 69L, 60L, 60L, 68L, 59L, 
60L, 60L, 59L, 58L, 71L, 64L, 64L, 68L, 57L, 53L, 49L, 62L, 71L, 
68L, 74L, 65L, 63L, 61L, 76L, 77L, 85L, 79L, 56L, 65L, 57L, 70L, 
40L, 59L, 70L, 85L, 62L, 57L, 59L, 77L, 57L, 63L, 65L, 50L, 61L, 
59L, 70L, 70L, 68L, 58L, 62L, 70L, 47L, 65L, 78L, 60L, 65L, 67L, 
40L, 57L, 63L, 61L, 63L, 61L, 65L, 45L, 60L, 66L, 57L, 73L, 70L, 
78L, 67L, 64L), d = c(7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 
8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 
7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 8L, 8L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 
7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 
7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 
8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 8L, 8L, 8L, 8L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 8L, 8L, 7L, 7L, 
8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 7L, 8L, 
7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 7L, 8L, 7L, 8L, 7L, 7L, 8L, 
7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 8L, 
7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 
7L, 7L, 8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 
8L, 8L, 7L, 7L, 7L, 8L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
8L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 
8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 
7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L)), class = "data.frame", row.names = c(NA, 
-514L))```
1 Like

Heres a working starting point for you.

library(shiny)
library(tidyverse)
library(UBL)
example_df <- structure(list(id = c(
  4L, 7L, 4L, 6L, 3L, 7L, 3L, 3L, 1L, 6L,
  3L, 7L, 3L, 10L, 4L, 6L, 3L, 3L, 7L, 8L, 7L, 8L, 7L, 6L, 10L,
  3L, 7L, 6L, 8L, 3L, 4L, 4L, 3L, 4L, 4L, 4L, 3L, 4L, 6L, 9L, 8L,
  7L, 4L, 7L, 4L, 7L, 4L, 10L, 3L, 10L, 8L, 3L, 6L, 7L, 3L, 4L,
  8L, 7L, 4L, 4L, 8L, 8L, 7L, 3L, 4L, 3L, 4L, 3L, 4L, 3L, 6L, 7L,
  5L, 8L, 8L, 6L, 7L, 8L, 3L, 4L, 3L, 7L, 4L, 3L, 3L, 2L, 4L, 7L,
  6L, 7L, 4L, 4L, 7L, 8L, 10L, 3L, 4L, 6L, 7L, 10L, 3L, 8L, 6L,
  3L, 3L, 3L, 3L, 10L, 4L, 3L, 3L, 4L, 3L, 4L, 4L, 1L, 8L, 3L,
  4L, 9L, 6L, 7L, 8L, 4L, 10L, 3L, 6L, 7L, 4L, 3L, 4L, 2L, 8L,
  7L, 8L, 8L, 9L, 3L, 7L, 3L, 4L, 3L, 7L, 3L, 8L, 6L, 3L, 7L, 4L,
  8L, 4L, 4L, 10L, 4L, 3L, 7L, 8L, 4L, 1L, 4L, 4L, 6L, 3L, 3L,
  8L, 4L, 7L, 7L, 8L, 8L, 3L, 3L, 3L, 4L, 10L, 8L, 3L, 6L, 7L,
  3L, 8L, 3L, 3L, 8L, 7L, 3L, 8L, 4L, 3L, 9L, 3L, 10L, 3L, 4L,
  8L, 3L, 6L, 4L, 6L, 4L, 4L, 4L, 6L, 7L, 4L, 7L, 4L, 9L, 9L, 4L,
  4L, 10L, 6L, 8L, 3L, 4L, 7L, 3L, 8L, 3L, 9L, 6L, 1L, 4L, 7L,
  4L, 7L, 4L, 6L, 4L, 4L, 3L, 8L, 6L, 4L, 3L, 4L, 3L, 6L, 3L, 8L,
  8L, 3L, 4L, 3L, 10L, 3L, 4L, 4L, 3L, 4L, 4L, 3L, 10L, 3L, 3L,
  4L, 4L, 4L, 8L, 3L, 3L, 4L, 4L, 6L, 3L, 10L, 3L, 4L, 8L, 4L,
  4L, 4L, 3L, 4L, 6L, 4L, 6L, 3L, 3L, 4L, 8L, 4L, 3L, 7L, 4L, 7L,
  4L, 3L, 8L, 3L, 4L, 6L, 4L, 4L, 3L, 3L, 8L, 4L, 7L, 6L, 6L, 4L,
  8L, 4L, 4L, 3L, 3L, 7L, 7L, 2L, 4L, 3L, 3L, 3L, 7L, 7L, 3L, 8L,
  3L, 4L, 3L, 4L, 8L, 8L, 7L, 4L, 8L, 7L, 3L, 6L, 8L, 4L, 4L, 3L,
  6L, 1L, 3L, 3L, 7L, 4L, 3L, 8L, 9L, 8L, 10L, 4L, 3L, 8L, 7L,
  9L, 3L, 3L, 4L, 8L, 3L, 3L, 8L, 4L, 3L, 4L, 7L, 7L, 7L, 8L, 7L,
  6L, 7L, 10L, 4L, 3L, 6L, 3L, 4L, 8L, 3L, 8L, 8L, 8L, 4L, 6L,
  10L, 3L, 3L, 7L, 6L, 4L, 4L, 3L, 7L, 8L, 8L, 6L, 4L, 3L, 7L,
  8L, 4L, 3L, 7L, 6L, 7L, 4L, 7L, 4L, 3L, 3L, 4L, 10L, 8L, 4L,
  4L, 4L, 4L, 7L, 8L, 4L, 4L, 7L, 6L, 4L, 4L, 3L, 4L, 4L, 7L, 4L,
  4L, 4L, 8L, 10L, 4L, 8L, 7L, 2L, 8L, 6L, 3L, 6L, 7L, 4L, 6L,
  3L, 4L, 3L, 3L, 6L, 4L, 6L, 3L, 8L, 4L, 7L, 3L, 9L, 8L, 3L, 3L,
  6L, 4L, 8L, 9L, 4L, 7L, 4L, 10L, 4L, 4L, 3L, 6L, 3L, 8L, 10L,
  7L, 3L, 1L, 4L, 3L, 4L, 3L, 1L, 8L, 3L, 6L, 8L, 3L, 3L, 3L, 7L,
  3L, 10L, 3L, 8L, 4L, 8L, 3L, 8L, 4L, 10L, 4L, 3L, 3L, 7L, 4L,
  7L, 4L, 7L, 3L, 6L, 8L, 2L, 6L, 4L, 5L
), a = c(
  5L, 5L, 5L, 7L,
  5L, 5L, 7L, 5L, 5L, 5L, 5L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L,
  5L, 9L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 15L,
  5L, 5L, 5L, 9L, 5L, 5L, 5L, 5L, 5L, 9L, 3L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 13L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L,
  7L, 7L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 5L, 5L,
  5L, 7L, 5L, 5L, 11L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 11L, 5L,
  7L, 5L, 5L, 5L, 9L, 5L, 3L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 7L,
  5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 7L, 5L, 0L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 13L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 7L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L,
  5L, 5L, 7L, 5L, 5L, 7L, 15L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L,
  5L, 5L, 5L, 5L, 7L, 13L, 5L, 5L, 5L, 7L, 5L, 5L, 3L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 15L,
  4L, 5L, 5L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 3L, 7L, 5L, 5L,
  5L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 7L, 7L,
  7L, 15L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 7L, 7L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L,
  5L, 11L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 9L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 11L, 5L, 5L, 5L, 3L,
  3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L,
  7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 7L, 5L, 5L, 15L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 13L, 3L, 5L, 7L, 5L, 7L, 7L,
  5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 7L, 5L, 7L, 5L, 5L, 5L, 5L, 7L, 5L, 7L, 5L, 7L, 5L,
  7L, 3L, 5L, 3L, 7L, 5L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 5L, 5L, 5L,
  5L, 5L, 5L, 5L, 3L, 5L, 5L
), b = c(
  39L, 52L, 265L, 697L, 337L,
  702L, 8L, 381L, 532L, 255L, 414L, 723L, 122L, 272L, 350L, 200L,
  367L, 330L, 152L, 457L, 194L, 247L, 1386L, 0L, 638L, 16L, 277L,
  271L, 722L, 81L, 265L, 1330L, 560L, 108L, 367L, 30L, 239L, 218L,
  36L, 73L, 141L, 39L, 378L, 226L, 719L, 33L, 73L, 78L, 395L, 59L,
  146L, 3L, 16L, 492L, 774L, 1627L, 285L, 65L, 83L, 58L, 74L, 273L,
  1675L, 520L, 80L, 26L, 83L, 391L, 346L, 89L, 169L, 814L, 75L,
  321L, 65L, 482L, 2020L, 339L, 346L, 56L, 295L, 567L, 354L, 281L,
  789L, 839L, 328L, 13L, 555L, 111L, 51L, 135L, 67L, 67L, 166L,
  178L, 287L, 1503L, 120L, 57L, 137L, 593L, 211L, 1059L, 177L,
  483L, 73L, 216L, 180L, 454L, 87L, 181L, 54L, 975L, 470L, 704L,
  205L, 419L, 487L, 187L, 911L, 315L, 542L, 874L, 553L, 44L, 587L,
  138L, 507L, 185L, 435L, 123L, 192L, 121L, 676L, 46L, 352L, 406L,
  210L, 219L, 56L, 122L, 8L, 96L, 45L, 43L, 1223L, 120L, 336L,
  274L, 658L, 670L, 627L, 319L, 1270L, 91L, 158L, 556L, 341L, 1070L,
  561L, 284L, 209L, 365L, 119L, 250L, 0L, 959L, 361L, 597L, 941L,
  673L, 128L, 303L, 4L, 1L, 46L, 227L, 200L, 73L, 428L, 75L, 141L,
  105L, 13L, 74L, 370L, 429L, 139L, 307L, 145L, 101L, 28L, 174L,
  517L, 1190L, 491L, 123L, 579L, 169L, 1238L, 396L, 158L, 89L,
  1310L, 223L, 373L, 182L, 295L, 31L, 107L, 65L, 328L, 584L, 417L,
  332L, 1669L, 936L, 160L, 455L, 589L, 1016L, 0L, 78L, 682L, 648L,
  243L, 263L, 37L, 108L, 1215L, 189L, 209L, 1222L, 166L, 123L,
  445L, 97L, 379L, 58L, 159L, 199L, 576L, 457L, 94L, 78L, 148L,
  232L, 38L, 292L, 63L, 398L, 406L, 235L, 1294L, 329L, 144L, 231L,
  40L, 73L, 210L, 47L, 587L, 853L, 53L, 252L, 71L, 256L, 828L,
  111L, 140L, 353L, 365L, 107L, 862L, 467L, 349L, 1325L, 38L, 252L,
  496L, 57L, 39L, 1645L, 156L, 20L, 47L, 112L, 19L, 991L, 390L,
  295L, 129L, 175L, 0L, 58L, 144L, 890L, 46L, 672L, 188L, 183L,
  934L, 153L, 1604L, 458L, 58L, 512L, 500L, 133L, 72L, 152L, 58L,
  114L, 738L, 236L, 388L, 188L, 305L, 248L, 890L, 109L, 128L, 244L,
  19L, 280L, 679L, 450L, 461L, 68L, 532L, 48L, 30L, 262L, 433L,
  118L, 352L, 101L, 67L, 275L, 430L, 50L, 576L, 867L, 327L, 234L,
  156L, 1405L, 107L, 419L, 162L, 232L, 42L, 96L, 345L, 372L, 220L,
  143L, 244L, 302L, 682L, 75L, 184L, 95L, 77L, 1098L, 81L, 160L,
  148L, 1621L, 336L, 431L, 113L, 112L, 627L, 191L, 457L, 710L,
  232L, 77L, 626L, 625L, 898L, 675L, 1131L, 228L, 145L, 70L, 248L,
  800L, 260L, 46L, 190L, 50L, 409L, 29L, 174L, 45L, 68L, 432L,
  66L, 156L, 294L, 1104L, 49L, 642L, 131L, 44L, 67L, 87L, 1132L,
  160L, 214L, 269L, 276L, 631L, 105L, 348L, 95L, 56L, 293L, 319L,
  272L, 728L, 370L, 26L, 179L, 681L, 382L, 210L, 59L, 210L, 845L,
  37L, 418L, 537L, 347L, 145L, 636L, 565L, 487L, 1779L, 371L, 542L,
  185L, 157L, 565L, 585L, 554L, 713L, 99L, 481L, 35L, 149L, 244L,
  162L, 172L, 464L, 222L, 1905L, 562L, 172L, 162L, 278L, 173L,
  273L, 40L, 751L, 38L, 83L, 174L, 72L, 980L, 736L, 922L, 108L,
  110L, 1686L, 360L, 71L, 301L, 195L, 684L, 367L, 102L, 485L, 285L,
  543L, 365L, 266L, 404L, 179L, 1267L, 244L, 337L, 470L, 720L,
  434L, 359L, 156L, 312L, 422L, 133L, 577L, 157L, 214L, 598L, 111L,
  469L, 246L, 936L, 48L, 140L, 75L
), c = c(
  59L, 74L, 65L, 76L,
  75L, 66L, 60L, 74L, 65L, 64L, 65L, 73L, 72L, 70L, 65L, 59L, 72L,
  67L, 59L, 71L, 69L, 74L, 54L, 48L, 61L, 67L, 71L, 65L, 70L, 42L,
  68L, 53L, 63L, 65L, 51L, 65L, 77L, 65L, 64L, 60L, 75L, 72L, 74L,
  74L, 66L, 65L, 79L, 63L, 61L, 70L, 58L, 68L, 79L, 59L, 62L, 68L,
  76L, 71L, 81L, 71L, 65L, 78L, 56L, 50L, 63L, 65L, 72L, 79L, 59L,
  72L, 56L, 70L, 64L, 74L, 45L, 63L, 62L, 72L, 70L, 68L, 60L, 46L,
  51L, 70L, 73L, 41L, 69L, 65L, 59L, 59L, 59L, 84L, 51L, 53L, 75L,
  68L, 64L, 78L, 50L, 61L, 72L, 71L, 67L, 60L, 52L, 76L, 67L, 74L,
  77L, 81L, 69L, 72L, 69L, 72L, 85L, 56L, 77L, 72L, 74L, 51L, 59L,
  69L, 87L, 54L, 51L, 45L, 75L, 68L, 60L, 84L, 80L, 55L, 62L, 74L,
  51L, 70L, 76L, 74L, 65L, 74L, 66L, 86L, 77L, 69L, 60L, 75L, 63L,
  68L, 66L, 66L, 77L, 61L, 42L, 72L, 69L, 73L, 68L, 65L, 57L, 51L,
  58L, 70L, 65L, 38L, 76L, 65L, 77L, 65L, 56L, 58L, 88L, 39L, 75L,
  65L, 49L, 59L, 61L, 73L, 61L, 75L, 61L, 63L, 77L, 74L, 58L, 70L,
  49L, 74L, 67L, 76L, 58L, 71L, 66L, 60L, 61L, 53L, 71L, 64L, 62L,
  75L, 55L, 55L, 56L, 53L, 44L, 69L, 75L, 72L, 59L, 60L, 76L, 41L,
  72L, 54L, 70L, 75L, 81L, 56L, 66L, 75L, 72L, 73L, 71L, 48L, 75L,
  73L, 62L, 78L, 65L, 82L, 62L, 72L, 52L, 47L, 65L, 80L, 65L, 75L,
  50L, 71L, 66L, 74L, 73L, 72L, 61L, 64L, 76L, 65L, 55L, 59L, 65L,
  67L, 76L, 52L, 77L, 64L, 73L, 81L, 65L, 78L, 52L, 61L, 52L, 58L,
  54L, 60L, 81L, 65L, 54L, 55L, 76L, 71L, 41L, 81L, 72L, 69L, 70L,
  77L, 74L, 69L, 52L, 69L, 66L, 51L, 64L, 80L, 55L, 60L, 65L, 53L,
  69L, 64L, 67L, 67L, 62L, 70L, 70L, 81L, 82L, 68L, 70L, 56L, 64L,
  82L, 58L, 56L, 52L, 69L, 65L, 65L, 84L, 65L, 58L, 72L, 50L, 55L,
  59L, 64L, 71L, 61L, 59L, 71L, 52L, 77L, 65L, 84L, 58L, 79L, 68L,
  75L, 58L, 54L, 75L, 87L, 78L, 45L, 69L, 73L, 69L, 65L, 54L, 80L,
  72L, 47L, 64L, 66L, 73L, 56L, 67L, 67L, 72L, 77L, 57L, 78L, 69L,
  62L, 72L, 42L, 65L, 71L, 52L, 70L, 65L, 80L, 73L, 41L, 62L, 65L,
  57L, 71L, 76L, 76L, 75L, 59L, 79L, 65L, 55L, 59L, 68L, 67L, 46L,
  60L, 71L, 60L, 65L, 60L, 69L, 79L, 64L, 61L, 68L, 49L, 65L, 65L,
  73L, 72L, 67L, 70L, 72L, 56L, 52L, 69L, 76L, 61L, 63L, 67L, 62L,
  43L, 63L, 59L, 65L, 84L, 67L, 76L, 61L, 62L, 85L, 72L, 75L, 79L,
  61L, 42L, 70L, 58L, 62L, 65L, 42L, 57L, 73L, 67L, 67L, 54L, 65L,
  70L, 48L, 83L, 70L, 60L, 63L, 49L, 54L, 69L, 60L, 60L, 68L, 59L,
  60L, 60L, 59L, 58L, 71L, 64L, 64L, 68L, 57L, 53L, 49L, 62L, 71L,
  68L, 74L, 65L, 63L, 61L, 76L, 77L, 85L, 79L, 56L, 65L, 57L, 70L,
  40L, 59L, 70L, 85L, 62L, 57L, 59L, 77L, 57L, 63L, 65L, 50L, 61L,
  59L, 70L, 70L, 68L, 58L, 62L, 70L, 47L, 65L, 78L, 60L, 65L, 67L,
  40L, 57L, 63L, 61L, 63L, 61L, 65L, 45L, 60L, 66L, 57L, 73L, 70L,
  78L, 67L, 64L
), d = c(
  7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L,
  8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L,
  7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 8L, 8L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 8L,
  7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 7L, 7L,
  7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L,
  8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 8L, 8L, 8L, 8L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 8L, 8L, 7L, 7L,
  8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 7L, 8L,
  7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 7L, 8L, 7L, 8L, 7L, 7L, 8L,
  7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 8L,
  7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L,
  7L, 7L, 8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L,
  8L, 8L, 7L, 7L, 7L, 8L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L,
  7L, 8L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
  8L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L,
  7L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 8L, 7L, 8L, 7L, 7L, 7L, 8L, 7L,
  8L, 8L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 7L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L,
  7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, 7L, 8L, 7L, 7L, 7L, 8L, 7L,
  7L, 7L, 7L, 7L, 7L, 7L, 8L, 7L
)), class = "data.frame", row.names = c(
  NA,
  -514L
))

ui <- fluidPage(
  splitLayout(
    div( style="border:1px solid",
    tags$h3("Loaded Data"),
    shiny::dataTableOutput("loaded_dt")
    ),
    div(),
    div(style="border:1px solid",
      tags$h3("Resampled Data"),
      shiny::dataTableOutput("resampled_dt")
    ),
    cellWidths = c(500, 20, 500)
  )
)

server <- function(input, output, session) {
  rov <- reactive({
    example_df
  })
  rob <- reactive({
    RandOverClassif(id ~ ., rov(), C.perc = "balance")
  })

  output$loaded_dt <- renderDataTable({
    req(rov())
  })

  output$resampled_dt <- renderDataTable({
    req(rob())
  })
}

shinyApp(ui, server)
1 Like

Thank you very much for your all efforts . when i tried same (just by changing variable name according to my code) still got same error saying
incorrect number of dimension

   rov <- reactive({
            smotenew()
          })
          rob <- reactive({
            RandOverClassif(tumor_stage ~ ., rov(), C.perc = "balance")
          })
          output$resampled_dt <- renderDataTable({
            rob()
          })

As you described i ran above code.
Could please tell me whats going wrong?
And what does error mean?

how have you defined this ? I have no idea of the contents...
Your problem is certainly on this mysterious smotenew() issue.
why is it with brackets?... its another reactive you defined ?
its defined by a-non reactive function?

i tried without () also ,then got error object of type 'closure' is not subsettable.

where did it come from, how are you providing it content....
i cant see what you dont share. I cant diagnose a patient when they are invisible to me.

What edits to my example did you make to bring you were you are now ?
better still, just provide it, like I provided mine to you...

thank you..

             
          #SMOTE
          smotenew<-reactive({
            smotenew2<-new1()
            smotenew2$id <- as.factor(smotenew2$id)
            smotenew2
          })
          
          output$smote_data<-renderPrint({
            str(smotenew())
          })
          
            #oversampling using UBL package 
          rov <- reactive({
            smotenew
          })
          rob <- reactive({
            RandOverClassif(id ~ ., rov(), C.perc = "balance")
          })
          output$resampled_dt <- renderDataTable({
            rob()
          })
      

this from where smote comes in code