i think they still look pretty messy:
structure(list(...1 = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
## 13, 14, 15, 16, 17, 18, 19, 20), date = structure(c(1598313600,
## 1598400000, 1598486400, 1598572800, 1598659200, 1598745600, 1598832000,
## 1598918400, 1599004800, 1599091200, 1599177600, 1599264000, 1599350400,
## 1599436800, 1599523200, 1599609600, 1599696000, 1599782400, 1599868800,
## 1599955200), tzone = "UTC", class = c("POSIXct", "POSIXt")),
## wind = c(0.805529953917051, 1.443125, 3.623125, 1.20180555555556,
## 1.38513888888889, 1.521875, 0.499444444444444, 0.731736111111111,
## 0.491458333333333, 0.560347222222222, 1.35298611111111, 0.988055555555556,
## 0.844375, 0.738888888888889, 0.512569444444444, 0.835763888888889,
## 1.02868055555556, 0.734583333333333, 0.410555555555556, 0.972361111111111
## ), wind_direction = c("247.191244239631", "186.26249999999999",
## "236.73541666666699", "226.271527777778", "200.058333333333",
## "192.459027777778", "223.32916666666699", "232.50486111111101",
## "194.33472222222201", "206.89513888888899", "200.17986111111099",
## "194.56805555555599", "263.71041666666702", "231.82708333333301",
## "238.774305555556", "258.13958333333301", "241.47708333333301",
## "246.159722222222", "223.66527777777799", "243.614583333333"
## ), temperature = c(16.1873271889401, 17.0677777777778, 18.1098611111111,
## 17.5280555555556, 17.2168055555556, 15.9779861111111, 16.9484722222222,
## 15.4502777777778, 12.4588194444444, 13.3585416666667, 13.4349305555556,
## 18.6405555555556, 15.2664583333333, 13.2375, 13.9465277777778,
## 16.2358333333333, 18.1772916666667, 15.2189583333333, 13.1726388888889,
## 15.8014583333333), humidity = c(71.7688940092166, 70.9423611111111,
## 64.7947222222222, 68.3627777777778, 73.4723611111111, 73.3069444444444,
## 74.8195138888889, 81.7063888888889, 88.5197222222222, 78.0480555555555,
## 82.7043055555555, 87.4257638888889, 82.7684027777778, 76.1327083333333,
## 77.416875, 76.3794444444444, 79.7432638888889, 73.8436111111111,
## 75.7621527777778, 75.3015277777778), air_pressure = c(993.736175115207,
## 990.029513888889, 986.658472222222, 993.611041666667, 982.227152777778,
## 983.600763888889, 987.835625, 995.736111111111, 997.071736111111,
## 997.178263888889, 998.447430555556, 998.812291666667, 996.524513888889,
## 998.36375, 1002.31729166667, 1003.82576388889, 1000.02180555556,
## 1000.24784722222, 996.665555555556, 997.971597222222), globalradiation = c(34.11866359447,
## 141.123680555556, 60.5072222222222, 151.976666666667, 124.071666666667,
## 185.319375, 121.866527777778, 114.900416666667, 99.3236111111111,
## 201.992916666667, 91.4524305555556, 73.3261805555556, 79.1616666666667,
## 166.542013888889, 176.949722222222, 185.437708333333, 116.506527777778,
## 182.823680555556, 193.956319444444, 184.710555555556)), row.names = c(NA,
## -20L), class = c("tbl_df", "tbl", "data.frame"))
but maybe the output of the data frame 'climatedata' is more helpful. it's the same data, just the date is splitted into Year, Month and Day and the column heading is changed, so it can be used to calcurate the evapotranspiration.
## Year Month Day Temp RH uz Rs
## 1 2020 8 25 16.18732719 71.76889 0.80552995 34.118664
## 2 2020 8 26 17.06777778 70.94236 1.44312500 141.123681
## 3 2020 8 27 18.10986111 64.79472 3.62312500 60.507222
## 4 2020 8 28 17.52805556 68.36278 1.20180556 151.976667
## 5 2020 8 29 17.21680556 73.47236 1.38513889 124.071667
## 6 2020 8 30 15.97798611 73.30694 1.52187500 185.319375
## 7 2020 8 31 16.94847222 74.81951 0.49944444 121.866528
## 8 2020 9 1 15.45027778 81.70639 0.73173611 114.900417
## 9 2020 9 2 12.45881944 88.51972 0.49145833 99.323611
## 10 2020 9 3 13.35854167 78.04806 0.56034722 201.992917
## 11 2020 9 4 13.43493056 82.70431 1.35298611 91.452431
## 12 2020 9 5 18.64055556 87.42576 0.98805556 73.326181
## 13 2020 9 6 15.26645833 82.76840 0.84437500 79.161667
## 14 2020 9 7 13.23750000 76.13271 0.73888889 166.542014
## 15 2020 9 8 13.94652778 77.41688 0.51256944 176.949722
## 16 2020 9 9 16.23583333 76.37944 0.83576389 185.437708
## 17 2020 9 10 18.17729167 79.74326 1.02868056 116.506528
## 18 2020 9 11 15.21895833 73.84361 0.73458333 182.823681
## 19 2020 9 12 13.17263889 75.76215 0.41055556 193.956319
## 20 2020 9 13 15.80145833 75.30153 0.97236111 184.710556