Using your data, I got the following result.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
bmi <- structure(list(PID = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 12, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100), SEX = c("F", "M", "F",
"F", "M", "F", "M", "M", "F", "F", "M", "M", "F", "F", "F", "F",
"F", "M", "M", "M", "M", "M", "M", "F", "F", "F", "M", "F", "M",
"F", "F", "M", "M", "F", "F", "M", "M", "M", "M", "F", "M", "M",
"M", "F", "F", "F", "F", "F", "F", "M", "F", "F", "F", "F", "F",
"M", "F", "M", "F", "F", "F", "M", "M", "M", "M", "M", "F", "M",
"M", "M", "F", "M", "M", "F", "M", "M", "F", "M", "F", "M", "F",
"F", "F", "F", "F", "F", "M", "M", "M", "F", "F", "F", "M", "M",
"M", "M", "F", "M", "M", "M", "F", "M"), HT = c(164.7, 168.9,
160.3, 162.9, 172.3, 155.2, 169.2, 166.6, 155.1, 162.1, 181.3,
168.3, 160.1, 157.4, 157.5, 167.9, 160.4, 174.3, 169.2, 172.5,
166.3, 166.6, 161, 165, 155.8, 168.5, 163.5, 157.1, 170.3, 163,
157, 173, 169.4, 166.2, 161.2, 164.8, 174.1, 162.3, 167, 154.9,
177.8, 178.8, 168.3, 150.6, 164.8, 161.5, 163.4, 162.1, 153.3,
181.3, 161.9, 160.6, 152.9, 163.2, 160.6, 169.7, 153.1, 169.6,
162.9, 166.1, 166.1, 166.7, 170.4, 170.3, 164.9, 166.9, 158.2,
177.2, NA, 173.9, 158.4, 170.6, 179.3, 165.6, 168.8, 168.2, 158.3,
173, 159.6, 174.2, 166.4, 158.9, 161.5, 171.3, 155.8, 154.8,
170.1, 164.1, 167, 159, 156.6, 159.2, 171.2, 169.6, 165.7, 178.8,
152.4, 174.4, 156.4, 173.1, 163.5, 166.1), WT = c(61.3, 65.7,
57.6, 62.9, 58.3, 55.2, 70.2, 60.6, 60.3, 58.9, 71, 62.5, 53.3,
53.1, 61.7, 68.1, 54.5, 73.6, 66.4, 67, 62.2, 63.1, 56.6, 63.7,
59.1, 61.4, NA, 48.2, 59.9, 63, 52.3, 70.3, 63.4, 55.5, 59.9,
62.3, 71, 57.3, 69.5, 53.7, 70.7, 74.5, 62.5, 50.8, 63, 57.2,
59.3, 60.8, 55.2, 69, 58.4, NA, 58.4, 63.2, 61, 68.4, 51.4, 69.5,
66, 62.3, 62.3, 60, 62.2, 65.2, 61, 65.7, 56, 69.3, 61.5, 66.4,
51.3, 69.1, 70, 62.5, 65.9, 67.5, 54.1, 70.8, 58.9, 69.9, 66.7,
52.1, 56.5, 64.9, 51.5, 53.2, 64.6, 60.2, 61.7, 58, 58.7, 61.1,
66, 67.2, 62.3, 76.6, 45.6, 72.3, 55.5, 69.1, 60.4, 63.8)), row.names = c(NA,
-102L), class = c("tbl_df", "tbl", "data.frame"))
bmi %>% summarize(MeanHT=mean(HT, na.rm = TRUE), MedHt=median(HT, na.rm = TRUE),MeanWt=mean(WT,na.rm = TRUE))
#> # A tibble: 1 x 3
#> MeanHT MedHt MeanWt
#> <dbl> <dbl> <dbl>
#> 1 165. 166. 61.9
Created on 2020-12-04 by the reprex package (v0.3.0)