original data, saved as tables `rdatLong` and `conditional_merged`
rdatLong <-
structure(list(T = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L), levels = c("Citizen", "Married", "Parental"), class = "factor"),
Item = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L), G = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), levels = c("F", "M"), class = "factor"),
Ind = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L), S = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), levels = c("Sw",
"UK", "Ge", "Br", "Th"), class = "factor"), Y = c(6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 6L, 6L, 6L, 6L,
6L, 5L, 6L, 6L, 6L, 6L, 5L, 6L, 6L, 5L, 6L, 6L, 5L, 6L, 6L,
6L, 6L, 6L, 7L, 6L, 7L, 6L, 6L, 5L, 6L, 6L, 6L, 7L, 6L, 6L,
6L, 7L, 6L, 6L, 6L, 7L, 6L, 5L, 6L, 7L, 6L, 6L, 7L, 5L, 3L,
5L, 5L, 6L, 7L, 7L, 6L, 7L, 7L, 6L, 6L, 7L, 6L, 6L, 7L, 6L,
6L, 6L, 6L, 4L, 5L, 6L, 6L, 7L, 6L, 6L, 5L, 7L, 7L, 6L, 6L,
4L, 6L, 6L, 4L, 7L, 4L, 7L, 6L, 6L, 7L, 7L, 7L, 5L, 7L, 6L,
7L, 7L, 7L, 7L, 4L, 6L, 4L, 7L, 6L, 6L, 7L, 6L, 6L, 5L, 6L,
6L, 7L, 2L, 5L, 7L, 5L, 6L, 3L, 6L, 7L, 7L, 7L, 6L, 7L, 6L,
6L, 7L, 6L, 7L, 7L, 3L, 6L, 7L, 7L, 7L, 7L, 7L, 4L, 7L, 7L,
7L, 7L, 6L, 5L, 7L, 6L, 7L, 6L, 5L, 1L, 4L, 7L, 7L, 7L, 7L,
7L, 1L, 7L, 7L, 7L, 5L, 6L, 7L, 7L, 7L, 5L, 5L, 7L, 4L, 1L,
4L, 6L, 4L, 3L, 2L, 4L, 6L, 1L, 7L, 1L, 1L, 7L, 3L, 4L, 1L,
1L, 2L, 6L, 4L, 6L, 6L, 2L, 6L, 4L, 2L, 2L, 2L, 1L, 7L, 6L,
5L, 7L, 1L, 7L, 5L, 5L, 4L, 6L, 1L, 7L, 6L, 2L, 3L, 5L, 4L,
2L, 4L, 5L, 5L, 6L, 7L, 3L, 4L, 6L, 2L, 4L, 5L, 3L, 6L, 1L,
2L, 1L, 4L, 2L, 3L, 1L, 2L, 5L, 2L, 2L, 7L, 1L, 1L, 6L, 1L,
1L, 5L, 2L, 7L, 2L, 4L, 1L, 3L, 3L, 6L, 7L, 1L, 5L, 3L, 6L,
4L, 1L, 1L, 1L, 2L, 2L, 2L, 7L, 3L, 1L, 4L, 1L, 6L, 1L, 2L,
2L, 5L, 4L, 3L, 1L, 1L, 1L, 4L, 3L, 1L, 7L, 3L, 4L)), row.names = c(NA,
-300L), class = "data.frame")
conditional_merged <-
structure(list(T = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L), levels = c("Citizen", "Married", "Parental"), class = "factor"),
Y = c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5), S = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), levels = c("Sw",
"UK", "Ge", "Br", "Th"), class = "factor"), Ind = c(NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Item = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
cond__ = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L), levels = c("Sw", "UK", "Ge", "Br",
"Th"), class = "factor"), cats__ = structure(c(1L, 1L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L,
7L, 7L, 7L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L,
5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 1L, 1L, 1L, 2L, 2L, 2L,
3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L,
6L, 6L, 6L, 7L, 7L, 7L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L), levels = c("1",
"2", "3", "4", "5", "6", "7"), class = "factor"), effect1__ = structure(c(1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), levels = c("Citizen",
"Married", "Parental"), class = "factor"), effect2__ = structure(c(1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L,
6L, 6L, 7L, 7L, 7L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L,
4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 1L, 1L, 1L, 2L,
2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L,
7L, 7L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L,
5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 1L, 1L, 1L, 2L, 2L, 2L, 3L,
3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L), levels = c("1",
"2", "3", "4", "5", "6", "7"), class = "factor"), estimate__ = c(0.0110654992318489,
0.0155451930948465, 0.0143688283366143, 0.0231477479538397,
0.0298180090439486, 0.0286696159552191, 0.0280057378331549,
0.0346250061289056, 0.0335251419107379, 0.0682172232574559,
0.0807131245046543, 0.0780251387214389, 0.105513471142949,
0.117887647659516, 0.115221373226776, 0.404292450048423,
0.405430022340397, 0.406003178411718, 0.336534780571447,
0.289696237598041, 0.2990972503542, 0.0156808816091179, 0.00277328606502982,
0.0111592137174544, 0.0306463734233264, 0.00768341965794163,
0.0236643286551781, 0.0349025263478279, 0.0112023977531259,
0.0284558530277247, 0.0811053269302007, 0.0325326196000248,
0.0689519399282479, 0.11757474130441, 0.0613850173001845,
0.106508592995788, 0.405475228422769, 0.351683434497228,
0.402642310694309, 0.285180985591472, 0.524287753718591,
0.333911980800946, 0.00979796886054212, 0.00570130805082793,
0.00233072817324596, 0.0212314078244049, 0.0140549388779621,
0.0068232687875468, 0.0260880112021022, 0.0185094524322694,
0.0100929525231874, 0.0645134418043492, 0.0493396337561076,
0.0296237944376507, 0.103084251746014, 0.0841942418578971,
0.056836357329974, 0.401257052161464, 0.387309254414065,
0.341430989449393, 0.352592362470262, 0.423839949798206,
0.546001130772936, 0.0921010834152706, 0.178876225540506,
0.134522409582397, 0.102213816840051, 0.14267641542715, 0.124009914545333,
0.0863710535019469, 0.103737854837303, 0.0965534740013175,
0.146835410566114, 0.15384253402327, 0.153172651093373, 0.152069338306094,
0.139587182476441, 0.147928895991995, 0.307696735598537,
0.211281064084697, 0.257488213122604, 0.0810186048192243,
0.035817672342357, 0.0542293755924334, 0.329192344483761,
0.332069463778455, 0.223812219006906, 0.172615827409854,
0.172253025721409, 0.155901890875351, 0.106583717789106,
0.106011352168884, 0.106287267510947, 0.136970466296969,
0.136582322262654, 0.151874907778618, 0.102126013959185,
0.101018276448439, 0.128795745775057, 0.112174416292674,
0.110978083294732, 0.176756398086223, 0.0114895432323385,
0.0111524113662377, 0.0252449963964245), se__ = c(0.00982897434582293,
0.0136614340031164, 0.012336477178051, 0.0160943425008606,
0.0196053997485493, 0.0192223541331911, 0.017004902709182,
0.019443871640266, 0.018745683210574, 0.0320664226501304,
0.0346546645511961, 0.0336283836865701, 0.0352242421734997,
0.034998135588272, 0.0339024280833158, 0.0409907081564807,
0.0403614522957276, 0.041136640652593, 0.123311314754203,
0.116903742861806, 0.115602503270152, 0.0136721132494112,
0.0028655272673575, 0.0100807490561194, 0.020524348579282,
0.00672585523129708, 0.0168098737374559, 0.0194651336798764,
0.00847014629843682, 0.0173781650046282, 0.034626716654684,
0.0211490832592673, 0.0323391782503615, 0.0349178447069473,
0.0312894293854673, 0.0360706958453841, 0.0400334661506288,
0.0694317088203182, 0.0420220164603831, 0.114302491600598,
0.140285249807933, 0.127005622452064, 0.00868437336077789,
0.00540747625687178, 0.00240730705024832, 0.0150432155342528,
0.0110437214954306, 0.00605113346383297, 0.0161762264144541,
0.0124986631801403, 0.0080192900181911, 0.032266965262857,
0.0276786941554329, 0.0198561436499061, 0.0373449901271686,
0.0363564838170285, 0.0296313651833963, 0.0424064126612661,
0.0510141672870054, 0.0757728278337127, 0.127988603510765,
0.137310986612634, 0.143325079056937, 0.0562809590383617,
0.0873483834864042, 0.0755732219442349, 0.0423097017690029,
0.0423457846391073, 0.043329961860808, 0.0286275672274886,
0.0279595480626215, 0.0276822991151561, 0.0310914676736756,
0.0301224587153443, 0.0309297161545429, 0.028094214161304,
0.0318473203013194, 0.0294801714703064, 0.0806760232946475,
0.0807302763443041, 0.0873990950276758, 0.0520339834246294,
0.0260936269414261, 0.0385915279748072, 0.121909202778624,
0.124943566349674, 0.100647790989541, 0.038751146304892,
0.0393667448102692, 0.04144055924087, 0.0272409590545223,
0.0277419844888264, 0.026920744113271, 0.0330019462183535,
0.0341131118146589, 0.0302565480114382, 0.0353372676829492,
0.0369701490627691, 0.0338723723534759, 0.0591420740666044,
0.0603561527127758, 0.0785244039152127, 0.00984776641321559,
0.0096044912551709, 0.0201100566239427), lower__ = c(0.000913982741156934,
0.00146405430602157, 0.0013935445989323, 0.0031477417767424,
0.00473699676050253, 0.00419686862395037, 0.00548920065971852,
0.00720796663964236, 0.0068783468349181, 0.0179106360445487,
0.0240834525100028, 0.022124749184778, 0.0396127643182086,
0.0497284984466486, 0.0473144769498911, 0.270807695307911,
0.285851184908906, 0.28732356165151, 0.115661609153439, 0.086086016891724,
0.0942601011929971, 0.00159667412082705, 0.000159622023744514,
0.000914789965871641, 0.00488321882244597, 0.000755076987142175,
0.00312645267397237, 0.00768070908536947, 0.00140633513155234,
0.00525194736062064, 0.0242932558663215, 0.00618889077908613,
0.0185020898008606, 0.0486622539705306, 0.0163178796394723,
0.0382350720542917, 0.284102305695123, 0.172903247930255,
0.270756618090465, 0.0924559223001569, 0.248956640966172,
0.110353114508128, 0.00079890008211194, 0.000333645263577051,
0.000120131753906724, 0.00305123371132576, 0.00140499585264682,
0.000603860469152212, 0.00483578775423189, 0.00257939545694531,
0.00122028328442474, 0.0165348226424873, 0.00955437764794756,
0.00498283373734577, 0.0362024437944096, 0.0232660681386723,
0.0125718154503175, 0.267639126776708, 0.22025881139775,
0.159177066629826, 0.122785358506728, 0.171327072157765,
0.249032963329149, 0.0167112043578239, 0.0429861025946624,
0.0265094158659963, 0.0310796909445921, 0.0593457259192043,
0.0440125940141797, 0.0347750913287578, 0.0537215127519549,
0.0449275762602897, 0.0774575275980634, 0.0928641184397192,
0.0907373920115007, 0.0935880352311787, 0.0703095960148987,
0.0830623383565781, 0.132553296117509, 0.0626989533690681,
0.0941462357518712, 0.0145432382613072, 0.00428366448649126,
0.00799675422286008, 0.118720863378195, 0.111441375304363,
0.0626867750692461, 0.0981129594158345, 0.0924419764529949,
0.0742344161780983, 0.0563579380005086, 0.0552364335737838,
0.0586130374607474, 0.0637893832055842, 0.061272292562135,
0.0848045960632077, 0.0341860109421753, 0.0342047641484036,
0.0553508085606113, 0.0226750150757711, 0.0228549828766774,
0.047244089505723, 0.000893033306311348, 0.000903840240186069,
0.00292069154005023), upper__ = c(0.0686565627835526, 0.0867632305960958,
0.0840329775013701, 0.0892021123456843, 0.105114566997267,
0.0996508109797314, 0.0831486974186986, 0.0960108691963655,
0.0922601265940269, 0.14842176507417, 0.16139648903417, 0.156941815087189,
0.176524489845079, 0.184069722492062, 0.184027350084172,
0.474993859953592, 0.477952869229246, 0.476925033436006,
0.636008277055492, 0.580822458160666, 0.591237415858338,
0.0854701646981032, 0.0238676048508396, 0.0732506210294763,
0.100556056539663, 0.0413444151261656, 0.0928770102507483,
0.0932413328139755, 0.0469500997037422, 0.0838399138635992,
0.159931165970491, 0.101368568490458, 0.151559445011825,
0.190939525399452, 0.140245678054706, 0.183038190641973,
0.479527230084332, 0.453987895097446, 0.476931394073483,
0.581435212624706, 0.795617187386757, 0.637678777991919,
0.0599781160801926, 0.0402142162440088, 0.0223730030811905,
0.079211351132755, 0.0640868752098044, 0.0393601702199409,
0.0807602587460517, 0.0666192418522572, 0.0446778309201877,
0.144956790114658, 0.127648867751171, 0.0966740133596861,
0.177983247229119, 0.16293614423449, 0.136042417380295, 0.47549541352253,
0.469357381972033, 0.454052607522457, 0.644816920184542,
0.734100352507667, 0.820317518878862, 0.286363014723545,
0.444800678667629, 0.372026270639255, 0.196873501786698,
0.231439133866329, 0.217953802745165, 0.147578469981255,
0.16264035804399, 0.155566800212894, 0.211648718785116, 0.214696679929251,
0.216673176150547, 0.211023277905634, 0.202169220477045,
0.207207980995132, 0.440602559443335, 0.388380263577091,
0.415276858900119, 0.264786986039771, 0.149577054115932,
0.207276287794153, 0.636523371770171, 0.649398433713199,
0.508564158906448, 0.251907727232264, 0.25188996257815, 0.238392871419476,
0.167058994062156, 0.164624546164505, 0.166777275025444,
0.204671025827926, 0.203281336217566, 0.216492026826437,
0.176291741684375, 0.178887787222629, 0.196212767753464,
0.286919155879723, 0.290793397488513, 0.356005721464494,
0.0671310150480841, 0.071730926195891, 0.118262826481373)), row.names = c(NA,
-105L), effects = c("T", "cats__"), response = "Y", surface = FALSE, categorical = TRUE, catscale = "Probability", ordinal = FALSE, points = structure(list(
T = c("Citizen", "Citizen", "Citizen", "Citizen", "Citizen",
"Citizen", "Citizen", "Citizen", "Citizen", "Citizen", "Married",
"Married", "Married", "Married", "Married", "Married", "Married",
"Married", "Married", "Married", "Parental", "Parental",
"Parental", "Parental", "Parental", "Parental", "Parental",
"Parental", "Parental", "Parental", "Citizen", "Citizen",
"Citizen", "Citizen", "Citizen", "Citizen", "Citizen", "Citizen",
"Citizen", "Citizen", "Married", "Married", "Married", "Married",
"Married", "Married", "Married", "Married", "Married", "Married",
"Parental", "Parental", "Parental", "Parental", "Parental",
"Parental", "Parental", "Parental", "Parental", "Parental"
), resp__ = c(6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 5L, 6L, 6L, 6L, 6L, 6L, 5L, 6L, 6L, 6L, 6L, 5L, 6L, 6L,
5L, 6L, 6L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 6L, 7L, 6L, 6L, 5L,
6L, 6L, 6L, 7L, 6L, 6L, 6L, 7L, 6L, 6L, 6L, 7L, 6L, 5L, 6L,
7L, 6L, 6L, 7L), cond__ = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), levels = "Sw", class = "factor"),
effect1__ = c("Citizen", "Citizen", "Citizen", "Citizen",
"Citizen", "Citizen", "Citizen", "Citizen", "Citizen", "Citizen",
"Married", "Married", "Married", "Married", "Married", "Married",
"Married", "Married", "Married", "Married", "Parental", "Parental",
"Parental", "Parental", "Parental", "Parental", "Parental",
"Parental", "Parental", "Parental", "Citizen", "Citizen",
"Citizen", "Citizen", "Citizen", "Citizen", "Citizen", "Citizen",
"Citizen", "Citizen", "Married", "Married", "Married", "Married",
"Married", "Married", "Married", "Married", "Married", "Married",
"Parental", "Parental", "Parental", "Parental", "Parental",
"Parental", "Parental", "Parental", "Parental", "Parental"
)), row.names = c(NA, 60L), class = "data.frame"), class = "data.frame")