Parallel computing with Snowfall package

Hi, I am trying to replicate a code form a paper and I am facing an issue with the parallel fashion . the code works perfectly with the sequential mode however when I use the parallel fashion the parallel execution is not providing the expected results. the sfLapply for Forecasts.GARCH returned a list of NULL values.

Blockquote
library(zoo)
library(xts)
library(parallel)
library(rugarch)
library(mvtnorm)
library(copula)

DAX.data <- read.csv("GDAXI.csv", header=TRUE)
DAX <- rev(DAX.data$Close)
Datum.DAX <- rev(DAX.data$Date)[-1]
Datum.DAX <- as.Date(Datum.DAX, "%m/%d/%y")
lr.DAX <- diff(log(DAX))
lr.DAX <- xts(x = lr.DAX, order.by = Datum.DAX)

GSPC

GSPC.data <- read.csv("GSPC.csv", header=TRUE)
GSPC <- rev(GSPC.data$Close)
Datum.GSPC <- rev(GSPC.data$Date)[-1]
Datum.GSPC <- as.Date(Datum.GSPC, "%m/%d/%y")
lr.GSPC <- diff(log(GSPC))
lr.GSPC <- xts(x = lr.GSPC, order.by = Datum.GSPC)

merge both DAX and GSPC

V.lr <- merge.xts(lr.DAX, lr.GSPC, all=FALSE)
V.ll <- -V.lr
Datum <- index(V.lr)
N <- nrow(V.lr)
n <- 5190

===========================================================

2. Rolling-window analysis of CoVaR and VaR forecasts

===========================================================

lag <- 1
p <- 0.95
q <- 0.95

library(snow)
library(snowfall) # Parallel computing
library(Rmpi)
library(rlecuyer) # RNG

sfSetMaxCPUs(number = 10)
sfInit(parallel = TRUE, cpus = 10, type = "MPI")

sfSource("CopulaFunctions.R")
sfSource("MLEstimation.R")
sfSource("RMApplication.R")

sfExport("V.ll")

sfLibrary(rugarch)
sfLibrary(evd)
sfLibrary(zoo)
sfLibrary(copula)
sfLibrary(mvtnorm)

wrapper <- function(i, n, lag, p, q, spec, V.ll) {
print("i = ")
print(i)

1. Estimate rolling-window parameters

R <- t(coredata(V.ll[(i - n + 1):(i + lag), ]))
Est <- GARCH.est(R, spec, lag, v = 10)

print("Length of Est:")
print(length(Est))
print("Est:")
print(Est)

if (any(sapply(Est, function(x) any(is.na(x))))) {
print("Estimators did not converge.")
return(list(CoVaR.forecasts.t = NA, CoVaR.forecasts.Gauss = NA))
}

print("Est$GAS.Gauss = ")
print(Est$GAS.Gauss)
print("Est$GAS.t = ")
print(Est$GAS.t)

2. Produce rolling window CoVaR forecasts

R <- t(coredata(V.ll[(i + 1):(i + lag), ]))
print("t Distr:")
CoVaR.forecasts.t <- CoVaR.t.forecast(R, Est$U, Est$eps, Est$Fn.1, Est$Fn.2, Est$outp1, Est$outp2, Est$GAS.t, lag, p, q)
print("Gauss distr:")
CoVaR.forecasts.Gauss <- CoVaR.Gauss.forecast(R, Est$U, Est$eps, Est$Fn.1, Est$Fn.2, Est$outp1, Est$outp2, Est$GAS.Gauss, lag, p, q)

return(list(CoVaR.forecasts.t = CoVaR.forecasts.t, CoVaR.forecasts.Gauss = CoVaR.forecasts.Gauss))
}

start <- Sys.time()
loop <- seq.int(from = n, to = N - lag, by = lag)

GARCH(1,1)

spec_garch <- ugarchspec(variance.model = list(model = "fGARCH", garchOrder = c(1, 1), submodel = "GARCH"),
mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
distribution.model = "norm")
Forecasts.GARCH <- sfLapply(loop, function(i) {
tryCatch({
wrapper(i, n = n, lag = lag, p = p, q = q, spec = spec_garch, V.ll = V.ll)
}, error = function(e) {
print(paste("Error in iteration", i))
print(e)
return(NULL)
})
})

print(Sys.time() - start)

Stop parallel computing

sfStop()

Any advise how to fix the issue. Thank you

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.