Split from Why not r via conda?
I have installed FSA and all its dependencies via:
conda skeleton cran FSA
conda build r-fsa
When trying to run within jupyter lab I get:
Error in library("FSA"): there is no package called ‘FSA’
I also tried
install.packages("FSA", "/users/setegonz/anaconda3/lib/R/library")
Same result
Looking for the package folder this is the path that I found:
/Users/setegonz/anaconda3/pkgs/r-fsa-0.8.22-r351h6115d3f_0
Why Jupyter is not able to use this package?
Any suggestions?
Also,
I'm trying to run
shapiro.test
within condas jupyter lab using IR Kernel
shapiro.test(data$Baseline.RT) # Not normal
shapiro.test(data$TBPM.RT) # Not normal
and I'm getting this output
Error in is.numeric(x): object of type 'closure' is not subsettable
Traceback:
1. shapiro.test(data$Baseline.RT)
2. stopifnot(is.numeric(x))
3. withCallingHandlers(tryCatch(if (missE) ...elt(i) else eval(cl.i,
. envir = envir), error = function(e) {
. e$call <- cl.i
. stop(e)
. }), warning = function(w) {
. w$call <- cl.i
. w
. })
4. tryCatch(if (missE) ...elt(i) else eval(cl.i, envir = envir),
. error = function(e) {
. e$call <- cl.i
. stop(e)
. })
5. tryCatchList(expr, classes, parentenv, handlers)
6. tryCatchOne(expr, names, parentenv, handlers[[1L]])
7. value[[3L]](cond)
Expected Behavior
When using anacondas Rstudio I get:
Shapiro-Wilk normality test
data: data$Baseline.RT
W = 0.86448, p-value = 0.0001234
Shapiro-Wilk normality test
data: data$TBPM.RT
W = 0.91325, p-value = 0.003238
So I expect to have the same output within conda's jupyter lab but nothing works....