Hi, and welcome!
A couple of preliminaries: please see the homework policy and the usefulness of a reproducible example, called a reprex.
The not found
error. Pretty much everything in R
is an object
, including built-in and user created functions. When you invoke an object by name, such as Survey_number
that name has to exist in either the global environment
or the local environment
. Most of the time, you can see what's in your local environment
with the simple command ls
.
# create a couple of objects
v <- seq(1,10,1)
string <- "This is a string"
# see if they appear in the local environment
ls()
#> [1] "string" "v"
In the case of subset
, it has to be within the data
argument.
Created on 2020-01-12 by the reprex package (v0.3.0)
You have the right syntax
mtcars
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
dat <- subset(mtcars, hp > 200)
dat
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
#> Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#> Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
#> Ford Pantera L 15.8 8 351 264 4.22 3.170 14.50 0 1 5 4
#> Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
Created on 2020-01-12 by the reprex package (v0.3.0)
It looks like you want
data_234 <- Scat_Hab_Data_1_, Survey_number > 1)
BTW, data()
is a built in function in R
, and to avoid potential confusion, using dat
or some descriptive name is preferable. Another example is df
, which can be substituted with df.
or df_ruminants
, for example.
Finally, a word on how to think of R
. There's a lot of programming and computer science under the hood, but it's in service of making the user interface functional
. That means just what you'd expect--school algebra writ large, f(x) = y.
When reading help()
for any function, you're looking for the arguments, referred to as inputs
and the result, referred to as output
. Sometimes there's more to the output than meets the eye on the screen. For example, a linear regression model.
# create the model
fit <- lm(hp ~ wt, data = mtcars)
# display it
fit
#>
#> Call:
#> lm(formula = hp ~ wt, data = mtcars)
#>
#> Coefficients:
#> (Intercept) wt
#> -1.821 46.160
# display more
summary(fit)
#>
#> Call:
#> lm(formula = hp ~ wt, data = mtcars)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -83.430 -33.596 -13.587 7.913 172.030
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1.821 32.325 -0.056 0.955
#> wt 46.160 9.625 4.796 4.15e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 52.44 on 30 degrees of freedom
#> Multiple R-squared: 0.4339, Adjusted R-squared: 0.4151
#> F-statistic: 23 on 1 and 30 DF, p-value: 4.146e-05
# look deeper
str(fit)
#> List of 12
#> $ coefficients : Named num [1:2] -1.82 46.16
#> ..- attr(*, "names")= chr [1:2] "(Intercept)" "wt"
#> $ residuals : Named num [1:32] -9.12 -20.89 -12.27 -36.58 18.03 ...
#> ..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
#> $ effects : Named num [1:32] -829.79 251.47 -8.14 -35.51 18.33 ...
#> ..- attr(*, "names")= chr [1:32] "(Intercept)" "wt" "" "" ...
#> $ rank : int 2
#> $ fitted.values: Named num [1:32] 119 131 105 147 157 ...
#> ..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
#> $ assign : int [1:2] 0 1
#> $ qr :List of 5
#> ..$ qr : num [1:32, 1:2] -5.657 0.177 0.177 0.177 0.177 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
#> .. .. ..$ : chr [1:2] "(Intercept)" "wt"
#> .. ..- attr(*, "assign")= int [1:2] 0 1
#> ..$ qraux: num [1:2] 1.18 1.05
#> ..$ pivot: int [1:2] 1 2
#> ..$ tol : num 1e-07
#> ..$ rank : int 2
#> ..- attr(*, "class")= chr "qr"
#> $ df.residual : int 30
#> $ xlevels : Named list()
#> $ call : language lm(formula = hp ~ wt, data = mtcars)
#> $ terms :Classes 'terms', 'formula' language hp ~ wt
#> .. ..- attr(*, "variables")= language list(hp, wt)
#> .. ..- attr(*, "factors")= int [1:2, 1] 0 1
#> .. .. ..- attr(*, "dimnames")=List of 2
#> .. .. .. ..$ : chr [1:2] "hp" "wt"
#> .. .. .. ..$ : chr "wt"
#> .. ..- attr(*, "term.labels")= chr "wt"
#> .. ..- attr(*, "order")= int 1
#> .. ..- attr(*, "intercept")= int 1
#> .. ..- attr(*, "response")= int 1
#> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#> .. ..- attr(*, "predvars")= language list(hp, wt)
#> .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
#> .. .. ..- attr(*, "names")= chr [1:2] "hp" "wt"
#> $ model :'data.frame': 32 obs. of 2 variables:
#> ..$ hp: num [1:32] 110 110 93 110 175 105 245 62 95 123 ...
#> ..$ wt: num [1:32] 2.62 2.88 2.32 3.21 3.44 ...
#> ..- attr(*, "terms")=Classes 'terms', 'formula' language hp ~ wt
#> .. .. ..- attr(*, "variables")= language list(hp, wt)
#> .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
#> .. .. .. ..- attr(*, "dimnames")=List of 2
#> .. .. .. .. ..$ : chr [1:2] "hp" "wt"
#> .. .. .. .. ..$ : chr "wt"
#> .. .. ..- attr(*, "term.labels")= chr "wt"
#> .. .. ..- attr(*, "order")= int 1
#> .. .. ..- attr(*, "intercept")= int 1
#> .. .. ..- attr(*, "response")= int 1
#> .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#> .. .. ..- attr(*, "predvars")= language list(hp, wt)
#> .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
#> .. .. .. ..- attr(*, "names")= chr [1:2] "hp" "wt"
#> - attr(*, "class")= chr "lm"
Created on 2020-01-12 by the reprex package (v0.3.0)