NA in lavaan output for Std.Err, z-value, and P(>|z|)

Dear Posit Community,

unfortunately I have a problem with my lavaan output in R Studio (Version R-4.3.0). I would be very grateful to get help with my problem! I do not get standard errors, z and p values displayed. For understanding here is my multiple mediation model and the corresponding output:

mbiMediation <- '
mbi_100 ~ b1*scs_100 + b2*erq_reap_100 + b3*erq_supp_100 + b4*sci_adapt_100 + b5*sci_maladapt_100 + c1*nfc_100
scs_100 ~ a1*nfc_100
erq_reap_100 ~ a2*nfc_100
erq_supp_100 ~ a3*nfc_100
sci_adapt_100 ~ a4*nfc_100
sci_maladapt_100 ~ a5*nfc_100
#indirect effects
indirect1 := a1*b1
indirect2 := a2*b2
indirect3 := a3*b3
indirect4 := a4*b4
indirect5 := a5*b5
#contrasts
contrast1 := indirect1 - indirect2
contrast2 := indirect1 - indirect3
contrast3 := indirect1 - indirect4
contrast4 := indirect1 - indirect5
contrast5 := indirect2 - indirect3
contrast6 := indirect2 - indirect4
contrast7 := indirect2 - indirect5
contrast8 := indirect3 - indirect4
contrast9 := indirect3 - indirect5
contrast10 := indirect4 - indirect5
#total effect
total1 := c1 + (a1*b1) + (a2*b2) + (a3*b3) + (a4*b4) + (a5*b5)
scs_100 ~~ erq_reap_100
scs_100 ~~ erq_supp_100
scs_100 ~~ sci_adapt_100
scs_100 ~~ sci_maladapt_100
erq_reap_100 ~~ erq_supp_100
erq_reap_100 ~~ sci_adapt_100
erq_reap_100 ~~ sci_maladapt_100
erq_supp_100 ~~ sci_adapt_100
erq_supp_100 ~~ sci_maladapt_100
sci_adapt_100 ~~ sci_maladapt_100
'

> fit_mbiMediation <- sem(mbiMediation,
+                         data = score_ZK,
+                         se = "bootstrap",
+                         bootstrap = 2000)
Warning message:
In lav_model_nvcov_bootstrap(lavmodel = lavmodel, lavsamplestats = lavsamplestats,  :
  lavaan WARNING: 94 bootstrap runs failed or did not converge.
> summary(fit_mbiMediation,
+         fit.measures = TRUE,
+         standardize = TRUE,
+         rsquare = TRUE,
+         estimates = TRUE,
+         ci = TRUE)
lavaan 0.6.15 ended normally after 180 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        27

  Number of observations                           641

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                               780.091
  Degrees of freedom                                21
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -15894.983
  Loglikelihood unrestricted model (H1)     -15894.983
                                                      
  Akaike (AIC)                               31843.966
  Bayesian (BIC)                             31964.468
  Sample-size adjusted Bayesian (SABIC)      31878.745

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: RMSEA <= 0.050                       NA
  P-value H_0: RMSEA >= 0.080                       NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             2000
  Number of successful bootstrap draws            1906

Regressions:
                     Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
  mbi_100 ~                                                                                 
    scs_100   (b1)     -0.037    0.044   -0.839    0.401   -0.124    0.050   -0.037   -0.037
    erq_r_100 (b2)     -0.110    0.046   -2.409    0.016   -0.200   -0.017   -0.110   -0.093
    erq_s_100 (b3)      0.132    0.036    3.677    0.000    0.061    0.202    0.132    0.135
    sc_dp_100 (b4)     -0.382    0.041   -9.284    0.000   -0.465   -0.301   -0.382   -0.364
    sc_ml_100 (b5)      0.117    0.035    3.390    0.001    0.053    0.190    0.117    0.120
    nfc_100   (c1)     -0.088    0.037   -2.359    0.018   -0.161   -0.015   -0.088   -0.104
  scs_100 ~                                                                                 
    nfc_100   (a1)      0.509    0.029   17.377    0.000    0.451    0.566    0.509    0.600
  erq_reap_100 ~                                                                            
    nfc_100   (a2)      0.067    0.029    2.294    0.022    0.010    0.126    0.067    0.093
  erq_supp_100 ~                                                                            
    nfc_100   (a3)      0.008    0.035    0.226    0.822   -0.058    0.076    0.008    0.009
  sci_adapt_100 ~                                                                           
    nfc_100   (a4)      0.158    0.032    4.927    0.000    0.094    0.220    0.158    0.194
  sci_maladapt_100 ~                                                                        
    nfc_100   (a5)     -0.286    0.033   -8.787    0.000   -0.349   -0.221   -0.286   -0.330

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
 .scs_100 ~~                                                                              
   .erq_reap_100      7.910    8.309    0.952    0.341   -8.119   25.056    7.910    0.040
   .erq_supp_100     -9.700   10.756   -0.902    0.367  -31.708   12.436   -9.700   -0.040
   .sci_adapt_100     4.412    8.980    0.491    0.623  -12.515   22.374    4.412    0.020
   .sci_maldpt_100  -37.666   10.492   -3.590    0.000  -58.000  -17.619  -37.666   -0.166
 .erq_reap_100 ~~                                                                         
   .erq_supp_100     54.565   11.224    4.861    0.000   34.294   77.074   54.565    0.214
   .sci_adapt_100    89.884   11.498    7.817    0.000   67.045  112.267   89.884    0.385
   .sci_maldpt_100   -4.120    9.076   -0.454    0.650  -21.689   13.918   -4.120   -0.017
 .erq_supp_100 ~~                                                                         
   .sci_adapt_100   -30.795   11.249   -2.737    0.006  -53.338   -9.432  -30.795   -0.109
   .sci_maldpt_100   24.683   11.044    2.235    0.025    3.460   46.593   24.683    0.085
 .sci_adapt_100 ~~                                                                        
   .sci_maldpt_100  -17.616    9.514   -1.852    0.064  -36.845    0.939  -17.616   -0.066

Variances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
   .mbi_100         216.307   12.310   17.572    0.000  190.214  239.234  216.307    0.732
   .scs_100         187.961   10.840   17.340    0.000  166.842  208.953  187.961    0.639
   .erq_reap_100    211.379   12.955   16.316    0.000  184.933  236.328  211.379    0.991
   .erq_supp_100    308.096   15.672   19.660    0.000  278.117  337.580  308.096    1.000
   .sci_adapt_100   258.464   15.656   16.509    0.000  228.760  288.977  258.464    0.962
   .sci_maldpt_100  273.102   17.671   15.455    0.000  239.342  307.939  273.102    0.891

R-Square:
                   Estimate
    mbi_100           0.268
    scs_100           0.361
    erq_reap_100      0.009
    erq_supp_100      0.000
    sci_adapt_100     0.038
    sci_maldpt_100    0.109

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
    indirect1        -0.019       NA                     -0.064    0.025   -0.019   -0.022
    indirect2        -0.007       NA                     -0.018   -0.000   -0.007   -0.009
    indirect3         0.001       NA                     -0.009    0.010    0.001    0.001
    indirect4        -0.060       NA                     -0.087   -0.036   -0.060   -0.071
    indirect5        -0.034       NA                     -0.057   -0.014   -0.034   -0.039
    contrast1        -0.012       NA                     -0.058    0.035   -0.012   -0.014
    contrast2        -0.020       NA                     -0.064    0.026   -0.020   -0.023
    contrast3         0.041       NA                     -0.009    0.094    0.041    0.049
    contrast4         0.015       NA                     -0.036    0.068    0.015    0.017
    contrast5        -0.008       NA                     -0.023    0.004   -0.008   -0.010
    contrast6         0.053       NA                      0.027    0.080    0.053    0.062
    contrast7         0.026       NA                      0.005    0.051    0.026    0.031
    contrast8         0.061       NA                      0.035    0.089    0.061    0.072
    contrast9         0.035       NA                      0.012    0.059    0.035    0.041
    contrast10       -0.027       NA                     -0.058    0.008   -0.027   -0.031
    total1           -0.207       NA                     -0.268   -0.141   -0.207   -0.244

I was running another models which additionally included control variables. Strangely enough, I got all Standard Errors, z-values, and p-values here. I already tried bootstrapping of 5000 and 10000. Further I tried this code:

parameterEstimates(fit_mbiMediation, ci = TRUE)

I also checked my datasets and the model syntax. Maybe I missed some mistakes. Anyway, I would be very grateful if anyone of you has some ideas for that issue.

Kindest regards!

If anyone is interested: I just found a very simple solution. Just add verbose = TRUE when fitting the model. Just like
fit_mbiMediation <- sem(mbiMediation, data = score_ZK, se = "bootstrap", bootstrap = 2000, verbose = TRUE)

Kindest regards!

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.