I am going through Forecasting: Principles and Practice with my own dataset. My data is weekly from 2016-2021 and I am running into an issue, when I run gg_tsresiduals on some models rows are removed and I get the following error:
Warning messages:
1: Removed 52 row(s) containing missing values (geom_path).
2: Removed 52 rows containing missing values (geom_point).
3: Removed 52 rows containing non-finite values (stat_bin).
Which tells me one year is not being plotted, 2016. All of the similar questions I've found have been fixed by removing missing values or expanding the x or y scale. I do not have any missing values in my dataset and I haven't changed the x or y scale so I'm not sure what's happening. Maybe in BTS calculations something is being divided by zero? I have included my code below with two years of 'data', any help would be appreciated.
library('fpp3')
df <- tibble(Date = c("2016/01/04", "2016/01/11", "2016/01/18", "2016/01/25", "2016/02/01", "2016/02/08", "2016/02/15", "2016/02/22", "2016/02/29", "2016/03/07", "2016/03/14", "2016/03/21", "2016/03/28", "2016/04/04", "2016/04/11", "2016/04/18", "2016/04/25", "2016/05/02", "2016/05/09", "2016/05/16", "2016/05/23", "2016/05/30", "2016/06/06", "2016/06/13", "2016/06/20", "2016/06/27", "2016/07/04", "2016/07/11", "2016/07/18", "2016/07/25", "2016/08/01", "2016/08/08", "2016/08/15", "2016/08/22", "2016/08/29", "2016/09/05", "2016/09/12", "2016/09/19", "2016/09/26", "2016/10/03", "2016/10/10", "2016/10/17", "2016/10/24", "2016/10/31", "2016/11/07", "2016/11/14", "2016/11/21", "2016/11/28", "2016/12/05", "2016/12/12", "2016/12/19", "2016/12/26", "2017/01/02", "2017/01/09", "2017/01/16", "2017/01/23", "2017/01/30", "2017/02/06", "2017/02/13", "2017/02/20", "2017/02/27", "2017/03/06", "2017/03/13", "2017/03/20", "2017/03/27", "2017/04/03", "2017/04/10", "2017/04/17", "2017/04/24", "2017/05/01", "2017/05/08", "2017/05/15", "2017/05/22", "2017/05/29", "2017/06/05", "2017/06/12", "2017/06/19", "2017/06/26", "2017/07/03", "2017/07/10", "2017/07/17", "2017/07/24", "2017/07/31", "2017/08/07", "2017/08/14", "2017/08/21", "2017/08/28", "2017/09/04", "2017/09/11", "2017/09/18", "2017/09/25", "2017/10/02", "2017/10/09", "2017/10/16", "2017/10/23", "2017/10/30", "2017/11/06", "2017/11/13", "2017/11/20", "2017/11/27", "2017/12/04", "2017/12/11", "2017/12/18", "2017/12/25"),
col1 = c(6.03, 31.66, 5.97, 89.95, 93.24, 36.02, 59.81, 37.20, 49.00, 36.89, 93.20, 9.10, 56.66, 40.57, 43.49, 85.92, 35.95, 90.84, 57.84, 51.59, 27.06, 11.16, 91.60, 96.07, 58.62, 28.78, 36.09, 15.79, 53.44, 27.44, 9.02, 99.31, 31.33, 66.01, 72.30, 59.40, 39.36, 70.82, 1.99, 28.46, 19.40, 61.57, 73.13, 40.45, 80.97, 35.88, 68.49, 65.63, 33.86, 69.83, 58.29, 84.92, 6.19, 30.92, 50.79, 91.88, 90.91, 80.86, 21.05, 41.23, 84.19, 45.24, 44.49, 62.83, 70.79, 28.80, 18.94, 83.62, 73.12, 9.32, 97.66, 59.63, 38.66, 89.76, 21.17, 58.87, 11.66, 94.41, 66.22, 88.55, 53.47, 26.38, 36.95, 66.91, 2.41, 20.40, 99.84, 19.07, 19.59, 71.72, 12.20, 82.44, 21.61, 89.83, 61.38, 5.71, 93.85, 10.69, 85.80, 18.22, 19.95,32.50, 64.10, 93.54))
Datecol <- WeatherReport$Date
col1 <- WeatherReport$Plus60
df$Date <- as.Date(df$Date, format = "%Y/%m/%d")
df <- df %>%
mutate(wk = yearweek(Date)) %>%
as_tsibble(index = wk)
fit <- df %>% model(SNAIVE(col1))
gg_tsresiduals(fit)