I have reproduced the same error with other data .frame of a smaller size
[image]
Reliability analysis Call: alpha(x = ALienselect8) 95% confidence boundaries Reliability if an item is dropped: Item statistics Non missing response frequency for each item 1 2 3 4 5 miss sp12.1_catcar 0.01 0.10 0.31 0.46 0.12 0 sp12.2_poscar 0.03 0.12 0.29 0.48 0.08 0 sp13.1_blank 0.15 0.21 0.32 0.14 0.18 0 sp13.2_high 0.04 0.10 0.10 0.24 0.53 0 sp13.3_hide 0.10 0.13 0.21 0.28 0.28 0 sp14.1_door 0.00 0.01 0.10 0.37 0.52 0 sp14.2_comf 0.03 0.10 0.23 0.42 0.22 0 sp14.3_posit 0.00 0.02 0.14 0.58 0.26 0
R Console
Description:df [1 × 9]
raw_alpha
std.alpha
G6(smc)
average_r
S/N
0.7396943 0.739979 0.7584662 0.2623902 2.845843
1 row | 1-6 of 9 columns
data.frame
1 x 9
Description:df [2 × 3]
lower
alpha
upper
Feldt 0.68 0.74 0.79
Duhachek 0.69 0.74 0.79
2 rows
data.frame
2 x 3
Description:df [8 × 8]
raw_alpha
std.alpha
G6(smc)
average_r
sp12.1_catcar 0.7180825 0.7155844 0.7167961 0.2643954
sp12.2_poscar 0.7154898 0.7112740 0.7137970 0.2603152
sp13.1_blank 0.7121261 0.7179291 0.7197110 0.2666478
sp13.2_high 0.7169390 0.7189509 0.7414520 0.2676366
sp13.3_hide 0.6665296 0.6813416 0.6863384 0.2339812
sp14.1_door 0.7432156 0.7475503 0.7626963 0.2972724
sp14.2_comf 0.7022847 0.6992253 0.7178810 0.2493095
sp14.3_posit 0.7173272 0.7104707 0.7265446 0.2595634
8 rows | 1-5 of 8 columns
data.frame
8 x 8
Description:df [8 × 7]
n
raw.r
std.r
r.cor
r.drop
sp12.1_catcar 200 0.5539647 0.5866364 0.5238638 0.4086515
sp12.2_poscar 200 0.5684598 0.6046226 0.5448943 0.4234212
sp13.1_blank 200 0.6523850 0.5767074 0.5157300 0.4539616
sp13.2_high 200 0.6070177 0.5723482 0.4620953 0.4202450
sp13.3_hide 200 0.7767512 0.7207093 0.7040112 0.6288032
sp14.1_door 200 0.3729868 0.4417068 0.2906518 0.2354531
sp14.2_comf 200 0.6384159 0.6531387 0.5836499 0.4886319
sp14.3_posit 200 0.5502944 0.6079368 0.5239009 0.4349025
8 rows | 1-6 of 7 columns
data.frame
8 x 7
Description:df [8 × 7]
n
raw.r
std.r
r.cor
r.drop
mean
sd
sp12.1_catcar 200 0.5539647 0.5866364 0.5238638 0.4086515 3.565 0.8829911
sp12.2_poscar 200 0.5684598 0.6046226 0.5448943 0.4234212 3.475 0.8963213
sp13.1_blank 200 0.6523850 0.5767074 0.5157300 0.4539616 2.995 1.2974560
sp13.2_high 200 0.6070177 0.5723482 0.4620953 0.4202450 4.125 1.1645410
sp13.3_hide 200 0.7767512 0.7207093 0.7040112 0.6288032 3.490 1.3032237
sp14.1_door 200 0.3729868 0.4417068 0.2906518 0.2354531 4.395 0.7222070
sp14.2_comf 200 0.6384159 0.6531387 0.5836499 0.4886319 3.710 1.0104479
sp14.3_posit 200 0.5502944 0.6079368 0.5239009 0.4349025 4.065 0.7164787
8 rows
[image][image][image]
[image]
structure(list(region = c("Northland", "Eastland", "Northland", "Northland", "Northland", "Northland"), subject = c(1, 2, 3, 4, 5, 6), name = c("Monita", "Lahoma", "Jalise", "Malon", "Marryn", "Anila"), colour = c("purple", "purple", "green", "purple", "purple", "red"), sex = c("male", "male", "male", "female", "female", "female" ), drives = c("Jetta", "Mustang", "Malibu", "C1500 Suburban 2Wd", "Toyota Tacoma 4Wd", "Passat"), age = c(13.71, 7.29, 7.41, 18.47, 7.73, 11.82), health = c("slightly spotty", "slightly spotty", "healthy", "healthy", "slightly spotty", "slightly spotty"), glucose = c(16.72, 14.94, 15.51, 12.38, 11.41, 13.38), iron = c(NA, 32.9, 23.2, 20.9, 22.4, NA), IQ = c(497, 518, 403, 454, 403, 503), weight = c(102.92, 93.73, 94.14, 106.66, 78.96, 86.19 ), sp12.1_catcar = c(3, 4, 3, 3, 3, 2), sp12.2_poscar = c(2, 4, 3, 1, 2, 3), sp13.1_blank = c(3, 3, 5, 3, 2, 1), sp13.2_high = c(5, 5, 5, 4, 2, 2), sp13.3_hide = c(1, 2, 5, 1, 2, 2), sp14.1_door = c(4, 5, 4, 3, 3, 3), sp14.2_comf = c(4, 4, 4, 4, 3, 3), sp14.3_posit = c(3, 4, 4, 4, 4, 4), sp14.4_reward = c(3, 5, 4, 2, 2, 1), sp14.5_freely = c(3, 4, 5, 2, 3, 5), sp14.6_feliway = c(2, 1, 5, 1, 3, 1), sp15.2_wrap = c(3, 3, 4, 2, 4, 3), sp15.3_chemuse = c(3, 3, 3, 1, 1, 2), sp16.1_abort = c(4, 3, 4, 4, 3, 3), sp16.2_gaba = c(4, 4, 4, 3, 3, 3), sp17.1_air = c(3, 1, 4, 1, 4, 1), sp14.7_invstart = c(5, 5, 5, 4, 3, 5)), row.names = c(NA, -6L), class = c("tbl_df", "tbl", "data.frame"))