Hi! I have been performing a variety of ANOVA tests with a set of data involving a group of plant species and a variable. Most have come out fine, but I am having some issues with several results, where the Df is one number less (14) than it should be (15). I even have the results of a mirror test with two more species where the Df is 17 (as it should be), so I am quite puzzled by how some are still 14 instead of 15. Any ideas on what could be the issue? Here is my code, ANOVA results and dataset:
one.wayWPDMay <- aov(WaterPot_Dawn ~ Art, data=dataMay)
summary(one.wayWPDMay)
Df Sum Sq Mean Sq F value Pr(>F)
Art 14 0.6805 0.04861 2.067 0.043 *
Residuals 33 0.7760 0.02352
Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
37 observations deleted due to missingness
dput(dataMay)
structure(list(Art = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 6L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L,
13L, 13L, 13L, 13L, 16L, 16L, 16L, 16L, 16L, 18L, 18L, 18L, 18L,
18L, 20L, 20L, 20L, 20L, 20L, 22L, 22L, 22L, 22L, 22L, 24L, 24L,
24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L), levels = c("Acer buergerianum ",
"Acer rufinerve ", "Caprinus japonica ", "Celtis australis ",
"Celtis occidentalis ", "Cladrastis lutea", "Cladrastis lutea ",
"Cornus controversa", "Cornus controversa ", "Cornus officinalis ",
"Magnolia denudata ", "Ostrya carpinifolia ", "Ostrya japonica",
"Ostrya japonica ", "Phellodendrok amurense", "Phellodendrok amurense ",
"Pterocarya fraxinifolia", "Pterocarya fraxinifolia ", "Quercus cerris ",
"Quercus shumardii", "Quercus shumardii ", "Quercus texana",
"Quercus texana ", "Quercus x hispanica ", "Zelkova serrata "
), class = "factor"), Date = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), levels = c("AMay", "BJune", "CJuly", "DAugust", "ESeptember"
), class = "factor"), Ind = c(1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L,
4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L,
5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L,
1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L,
2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L,
3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L), WaterPot_Dawn = c(NA,
NA, 0.41, 0.596, 0.78, NA, NA, 0.62, 0.75, 0.448, 0.12, 0.488,
0.73, NA, NA, 0.355, 0.28, 0.41, 0.278, 0.505, 0.565, 0.57, 0.66,
0.378, 0.87, 0.462, NA, 0.54, NA, 0.46, 0.461, 0.42, 0.32, NA,
NA, 0.28, 0.75, 0.28, NA, NA, 0.401, 0.43, 0.47, NA, NA, 0.56,
0.54, 0.87, NA, NA, 0.65, 0.6, 0.77, NA, NA, 0.46, 0.46, NA,
0.357, NA, 0.38, 0.62, 0.362, NA, NA, 0.79, NA, 0.89, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.46, 0.54, 0.422, NA,
NA), WaterPot_Noon = c(NA, NA, 0.14, 0.28, 0.31, NA, NA, 0.255,
0.42, 0.182, 0.31, 0.62, 0.91, NA, NA, 0.85, 0.93, 0.52, NA,
NA, 0.227, 0.58, 0.48, NA, NA, 0.25, NA, 0.24, NA, 0.28, 0.77,
1.24, 0.49, NA, NA, 0.55, 0.84, 0.82, NA, NA, 0.26, 0.51, 0.68,
NA, NA, 0.65, 1.14, 0.74, NA, NA, 0.47, 0.49, 0.68, NA, NA, 0.47,
0.58, NA, 0.48, NA, 0.69, 0.71, 0.606, NA, NA, 0.85, 0.86, 0.26,
NA, NA, 0.22, 0.78, 0.56, NA, NA, NA, NA, NA, NA, NA, 0.86, 0.43,
0.47, NA, NA), ChloroCont = c(NA, NA, 21.2, 18.1, 18.4, NA, NA,
26.1, 24.7, 26, 27.4, 24.3, 24.8, 26.7, 23.9, 31.6, 6.2, 17.2,
29.5, 18.7, NA, NA, NA, NA, NA, 13.9, NA, 15.3, NA, 14.4, 29.5,
25.8, 26.9, 22.3, 23, 28.4, 25.9, 33.8, 36.6, 33.1, 14.4, 22,
16.8, 18.1, 26.2, 28, 25.4, 24.3, 28.4, 27.5, 25, 23.4, 27.1,
25.2, 25.4, 17.4, 17, NA, 19, NA, 24.3, 26.2, 25.5, 25.8, 20.4,
9.1, 17, 16.4, 16.3, 13.1, 14, 12.6, 12.5, NA, 7.6, NA, NA, NA,
NA, NA, 19.1, 19.1, 16.9, 17, 17.5), Leaf_area = c(NA, NA, 52.6,
63.29, 22.97, NA, NA, 332, 318.04, 338.9, 41.76, 56.04, 47.83,
65.03, 56.11, 5.92, 2.99, 7, 5.95, 3.57, NA, NA, NA, NA, NA,
23.9, NA, 34.83, NA, 25.03, 142.84, 113.32, 158.48, 63.24, 94.13,
41.2, 59.1, 87.64, 51.47, 88.47, 161, 184.5, 197.38, 201.05,
160.03, 56.2, 48.26, 28.4, 83.74, 35.55, 43.72, 61.86, 37.18,
67.41, 80.3, 78.69, 42.49, NA, 62.85, NA, 315.57, 242.21, 333.31,
266.55, 43.12, 33.01, 34.55, 65.6, 36.52, 26.7, 18.17, 28.44,
31.74, NA, 29.78, NA, NA, NA, NA, NA, 126.7, 119.21, 95.46, 148.23,
126.16), Fresh_weight = c(NA, NA, 1.16, 1.26, 0.79, NA, NA, 7.23,
5.84, 5.05, 1.06, 1.29, 1.22, 1.46, 1.24, 0.6, 0.57, 0.61, 0.62,
0.6, 0.58, 0.57, 0.59, 0.57, 0.57, 1.62, NA, 2.12, NA, 1.69,
2.81, 2.37, 2.87, 1.52, 2.1, 1.08, 1.28, 1.89, 1.31, 1.88, 3.09,
3.51, 3.89, 3.49, 3.25, 0.87, 0.76, 0.5, 1.32, 0.7, 0.99, 1.12,
0.89, 1.13, 1.31, 3.19, 1.93, NA, NA, NA, 9.77, 7.36, 9.92, 9.73,
1.55, 0.68, 0.74, 0.85, 0.94, 0.74, 0.71, 0.86, 0.97, NA, 0.96,
NA, NA, NA, NA, NA, 1.81, 1.51, 1.3, 2.14, 1.85), Dry_weight = c(NA,
NA, 0.26, 0.27, 0.1, NA, NA, 2.25, 1.84, 1.6, 0.31, 0.39, 0.3,
0.44, 0.37, 0.047, 0.024, 0.035, 0.049, 0.039, 0.021, 0.018,
0.019, 0.015, 0.023, 0.41, NA, 0.49, NA, 0.36, 0.68, 0.56, 0.74,
0.34, 0.5, 0.3, 0.41, 0.57, 0.36, 0.63, 0.62, 0.75, 0.78, 0.77,
0.76, 0.36, 0.29, 0.2, 0.52, 0.3, 0.28, 0.31, 0.24, 0.34, 0.41,
0.68, 0.37, NA, 0.57, NA, 1.9, 1.49, 1.97, 1.82, 0.25, 0.2, 0.19,
0.22, 0.24, 0.16, 0.12, 0.16, 0.18, NA, 0.13, NA, NA, NA, NA,
NA, 0.51, 0.42, 0.39, 0.57, 0.46), DBH = c(NA, NA, 18, 14.8,
9.8, NA, NA, 10, 10, 10.2, 11.4, 10, 11.6, 11.2, 9.6, 12, 11.8,
11.8, 13.2, 13.7, 10.4, 11, 13, 11, 11.2, 8, NA, 10.2, NA, 10.6,
12, 12.2, 12.4, 10.2, 12, 10.4, 8, 9, 9, 9.4, 9, 8.6, 8.6, 8.2,
8.2, 9.4, 10.4, 11.2, 9.8, 10, 8, 8.2, 10.2, 10.2, 10.4, 13,
17.8, NA, 13.4, NA, 20.2, 21, 17.8, 22, 272, 13.2, 9, 12.2, 9.2,
8.6, 11.8, 13, 13.6, NA, 13.8, NA, NA, NA, NA, NA, 19.4, 12.6,
15.8, 16.6, 12.1), Height = c(NA, NA, 371L, 397L, 303L, NA, NA,
352L, 309L, 337L, 251L, 293L, 313L, 307L, 270L, 372L, 379L, 372L,
362L, 385L, 337L, 338L, 318L, 316L, 318L, 327L, NA, 368L, NA,
351L, 331L, 324L, 332L, 273L, 301L, 307L, 331L, 338L, 261L, 300L,
331L, 301L, 327L, 343L, 310L, 300L, 425L, 374L, 343L, 384L, 367L,
336L, 372L, 379L, 379L, 325L, 273L, NA, 341L, NA, 437L, 502L,
409L, 393L, 565L, 383L, 432L, 449L, 403L, 409L, 412L, 444L, 446L,
NA, 408L, NA, NA, NA, NA, NA, 462L, 444L, 392L, 425L, 374L),
X1st_leaf = c(NA, NA, 189, 179.5, 185, NA, NA, 182.5, 169,
178, 157, 173, 195, 168, 164, 196, 210, 185, 189, 195, 230,
185, 210, 194, 189, 172, NA, 203, NA, 176, 189, 179, 196,
185, 176, 164, 148, 148, 157, 146, 193, 206, 158, 193, 194,
169, 175, 150, 174, 171, 170, 210, 176, 175, 176, 191, 215,
NA, 224, NA, 157, 202, 183, 200, 244, 140, 158, 178, 183,
149, 171, 154, 175, NA, 158, NA, NA, NA, NA, NA, 137, 216,
206, 226, 168), Axis_1 = c(NA, NA, 123, 146, 80, NA, NA,
87, 61, 68, 95, 116, 118, 94, 124, 50, 63, 67, 65, 70, 83,
82, 93, 57, 56, 52, NA, 97, NA, 67, 128, 127, 150, 51, 114,
74, 30, 50, 50, 62, 33, 56, 46, 128, 68, 128, 86, 98, 106,
45, 63, 87, 85, 98, 78, 74, 121, NA, 81, NA, 135, 180, 160,
162, 210, 125, 136, 108, 136, 57, 82, 59, 90, NA, 63, NA,
NA, NA, NA, NA, 229, 175, 205, 230, 160), Axis_2 = c(NA,
NA, 112, 106, 90, NA, NA, 92, 58, 63, 81, 104, 133, 105,
109, 94, 68, 69, 59, 53, 89, 98, 78, 68, 73, 66, NA, 77,
NA, 87, 141, 156, 137, 39, 101, 66, 27, 41, 45, 64, 51, 59,
72, 110, 67, 133, 74, 66, 103, 48, 61, 84, 96, 93, 61, 58,
81, NA, 79, NA, 118, 110, 106, 57, 180, 98, 113, 103, 125,
80, 67, 93, 89, NA, 64, NA, NA, NA, NA, NA, 190, 145, 195,
143, 177), Canopy_size = c(NA, NA, 182, 217.5, 118, NA, NA,
169.5, 140, 159, 94, 120, 118, 139, 106, 176, 169, 187, 173,
190, 107, 153, 108, 122, 129, 155, NA, 165, NA, 175, 142,
145, 136, 88, 125, 143, 183, 190, 104, 154, 138, 95, 169,
150, 116, 131, 250, 224, 169, 213, 197, 126, 196, 204, 203,
134, 58, NA, 117, NA, 280, 300, 226, 193, 321, 243, 274,
271, 220, 260, 241, 290, 271, NA, 250, NA, NA, NA, NA, NA,
325, 228, 186, 199, 206), Leaf_dry_cont = c(NA, NA, 0.224137931,
0.214285714, 0.126582278, NA, NA, 0.31120332, 0.315068493,
0.316831683, 0.29245283, 0.302325581, 0.245901639, 0.301369863,
0.298387097, 0.078333333, 0.042105263, 0.057377049, 0.079032258,
0.065, 0.036206897, 0.031578947, 0.03220339, 0.026315789,
0.040350877, 0.25308642, NA, 0.231132075, NA, 0.213017751,
0.241992883, 0.23628692, 0.257839721, 0.223684211, 0.238095238,
0.277777778, 0.3203125, 0.301587302, 0.27480916, 0.335106383,
0.200647249, 0.213675214, 0.200514139, 0.220630372, 0.233846154,
0.413793103, 0.381578947, 0.4, 0.393939394, 0.428571429,
0.282828283, 0.276785714, 0.269662921, 0.300884956, 0.312977099,
0.213166144, 0.191709845, NA, NA, NA, 0.194472876, 0.202445652,
0.19858871, 0.18705036, 0.161290323, 0.294117647, 0.256756757,
0.258823529, 0.255319149, 0.216216216, 0.169014085, 0.186046512,
0.18556701, NA, 0.135416667, NA, NA, NA, NA, NA, 0.281767956,
0.278145695, 0.3, 0.26635514, 0.248648649), Crown_volume = c(NA,
NA, 10502268.84, 14099593.49, 3558796.158, NA, NA, 5682839.517,
2074791.564, 2853219.581, 3029877.619, 6064027.804, 7757187.07,
5746726.946, 6001262.971, 3464967.257, 3032667.353, 3621213.321,
2779073.805, 2952678.215, 3310857.477, 5150151.067, 3281632.288,
1980761.602, 2208966.892, 2228268.837, NA, 5162202.217, NA,
4272880.168, 10735098.56, 12033305.17, 11706830.86, 733172.3271,
6028716.302, 2925501.345, 620904.3721, 1631533.785, 980176.9079,
2559652.408, 972863.2802, 1314777.469, 2344583.164, 8846724.913,
2213758.868, 9341605.342, 6664365.216, 6068853.29, 7728912.736,
1927178.597, 3171211.589, 3857071.531, 6699383.502, 7788033.321,
4045843.55, 2409090.533, 2381151.302, NA, 3136076.017, NA,
18683679.83, 24881413.82, 16055465.3, 7465102.729, 50825942.59,
12468981.24, 17638291.84, 12627543.71, 15666075.37, 4966229.667,
5546184.426, 6665328.638, 9092648.785, NA, 4222300.526, NA,
NA, NA, NA, NA, 59232635.09, 24234245.73, 31145121.25, 27416092.66,
24437066.95), Specific_leaf = c(NA, NA, 202.3076923, 234.4074074,
229.7, NA, NA, 147.5555556, 172.8478261, 211.8125, 134.7096774,
143.6923077, 159.4333333, 147.7954545, 151.6486486, 125.9574468,
124.5833333, 200, 121.4285714, 91.53846154, NA, NA, NA, NA,
NA, 58.29268293, NA, 71.08163265, NA, 69.52777778, 210.0588235,
202.3571429, 214.1621622, 186, 188.26, 137.3333333, 144.1463415,
153.754386, 142.9722222, 140.4285714, 259.6774194, 246, 253.0512821,
261.1038961, 210.5657895, 156.1111111, 166.4137931, 142,
161.0384615, 118.5, 156.1428571, 199.5483871, 154.9166667,
198.2647059, 195.8536585, 115.7205882, 114.8378378, NA, 110.2631579,
NA, 166.0894737, 162.557047, 169.1928934, 146.456044, 172.48,
165.05, 181.8421053, 298.1818182, 152.1666667, 166.875, 151.4166667,
177.75, 176.3333333, NA, 229.0769231, NA, NA, NA, NA, NA,
248.4313725, 283.8333333, 244.7692308, 260.0526316, 274.2608696
)), row.names = c(NA, -85L), class = "data.frame")
Thanks a lot!