Incorrect code: I couldn't run a panel VAR using monthly data in R

Hi RStudio Community!
I am trying to run a panel VAR in R using a monthly data. I usually don't have any issue with the code if it is a yearly data. But whenever I run the code, I will get the "Error in xtfrm.data.frame(x) : cannot xtfrm data frames".

This is the code I use when I'm running a yearly data.

varone <-pvargmm(
dependent_vars = c("SP", "IDV"),
lags = 1,
transformation = "fod",
data = Olu,
panel_identifier = c("Bank", "Year"),
steps = c("twostep"),
system_instruments = FALSE,  # System GMM estimator
max_instr_dependent_vars = 99,
min_instr_dependent_vars = 2L,
collapse = FALSE
)
summary(varone)
#Some Diagnostics
Andrews_Lu_MMSC(varone)
stab_varone <- stability(varone)
print(stab_varone)
plot(stab_varone)
#Generating IRFs
varone_oirf <- oirf(varone, n.ahead = 4)
varone_girf <- girf(varone, n.ahead = 4, ma_approx_steps = 4)
varone_bs <- bootstrap_irf(varone, typeof_irf = c("GIRF"), n.ahead = 4, nof_Nstar_draws = 10, confidence.band = 0.95)
plot(varone_girf, varone_bs)```


Here's my monthly data format >>
```Date	Firm	SP	IDV
17/5/2008	1	41.55	78.1671764
17/6/2008	1	41.55	88.71156551
17/7/2008	1	41.55	94.62386639
17/8/2008	1	41.55	90.25628369
17/9/2008	1	41.55	167.8154374
17/10/2008	1	41.55	206.0425319
17/11/2008	1	41.55	143.4637941
17/12/2008	1	41.55	145.8841294
17/1/2009	1	40.56	146.2989599
17/2/2009	1	40.56	147.8324335
17/3/2009	1	40.56	132.3191329
17/4/2009	1	40.56	103.6057804
17/5/2009	1	40.56	103.6464375
17/6/2009	1	40.56	109.9066284
17/7/2009	1	40.56	101.2797006
17/8/2009	1	40.56	98.25295428
17/9/2009	1	40.56	99.4154606
17/10/2009	1	40.56	86.35406984
17/11/2009	1	40.56	99.45631204
17/12/2009	1	40.56	98.41018199
17/1/2010	1	36.17	113.0533892
17/2/2010	1	36.17	111.374998
17/3/2010	1	36.17	107.5623321
17/4/2010	1	36.17	103.8260152
17/5/2010	1	36.17	146.9229145
17/6/2010	1	36.17	134.131418
17/7/2010	1	36.17	141.9443299
17/8/2010	1	36.17	121.069976
17/9/2010	1	36.17	132.6676209
17/10/2010	1	36.17	122.8472654
17/11/2010	1	36.17	127.5586595
17/12/2010	1	36.17	130.4620766
17/1/2011	1	32.73	110.5378187
17/2/2011	1	32.73	93.99837031
17/3/2011	1	32.73	127.251416
17/4/2011	1	32.73	115.8967363
17/5/2011	1	32.73	89.15496195
17/6/2011	1	32.73	117.6272763
17/7/2011	1	32.73	156.7766995
17/8/2011	1	32.73	215.0422942
17/9/2011	1	32.73	190.5246478
17/10/2011	1	32.73	166.4254173
17/11/2011	1	32.73	198.1231932
17/12/2011	1	32.73	182.7998454
17/1/2012	1	31.48	161.9961291
17/2/2012	1	31.48	142.6191284
17/3/2012	1	31.48	134.6995838
17/4/2012	1	31.48	127.5277319
17/5/2012	1	31.48	160.4464483
17/6/2012	1	31.48	189.4425436
17/7/2012	1	31.48	160.2275403
17/8/2012	1	31.48	123.0971093
17/9/2012	1	31.48	152.0809791
17/10/2012	1	31.48	159.5541814
17/11/2012	1	31.48	173.7342532
17/12/2012	1	31.48	168.511748
17/1/2013	1	31.31	167.8918869
17/2/2013	1	31.31	125.5674663
17/3/2013	1	31.31	141.5396622
17/4/2013	1	31.31	133.6297578
17/5/2013	1	31.31	106.2872956
17/6/2013	1	31.31	119.5215531
17/7/2013	1	31.31	108.3500438
17/8/2013	1	31.31	118.5749171
17/9/2013	1	31.31	132.7210016
17/10/2013	1	31.31	158.6930179
17/11/2013	1	31.31	96.36528748
17/12/2013	1	31.31	119.3385261
17/1/2014	1	30.47	111.0462013
17/2/2014	1	30.47	98.21535362
17/3/2014	1	30.47	113.5682659
17/4/2014	1	30.47	101.6973428
17/5/2014	1	30.47	104.1855346
17/6/2014	1	30.47	86.67951839
17/7/2014	1	30.47	93.17936195
17/8/2014	1	30.47	99.6378978
17/9/2014	1	30.47	123.5690457
17/10/2014	1	30.47	119.2752895
17/11/2014	1	30.47	114.062693
17/12/2014	1	30.47	111.5614839
17/1/2015	1	32.18	136.2074457
17/2/2015	1	32.18	113.0624447
17/3/2015	1	32.18	103.9277457
17/4/2015	1	32.18	102.1256079
17/5/2015	1	32.18	106.3849656
17/6/2015	1	32.18	117.341851
17/7/2015	1	32.18	128.4748616
17/8/2015	1	32.18	131.1165349
17/9/2015	1	32.18	174.3628331
17/10/2015	1	32.18	125.1895271
17/11/2015	1	32.18	101.8232681
17/12/2015	1	32.18	113.0718169
17/1/2016	1	34.85	149.5762644
17/2/2016	1	34.85	155.8688966
17/3/2016	1	34.85	166.2577496
17/4/2016	1	34.85	144.6225879
17/5/2016	1	34.85	132.8261068
17/6/2016	1	34.85	243.3254
17/7/2016	1	34.85	236.1954322
17/8/2016	1	34.85	143.8483186
17/9/2016	1	34.85	149.0530404
17/10/2016	1	34.85	134.166564
17/11/2016	1	34.85	251.402222
17/12/2016	1	34.85	222.4529313
17/1/2017	1	33.19	265.8841234
17/2/2017	1	33.19	202.1854423
17/3/2017	1	33.19	235.4675576
17/4/2017	1	33.19	181.3023623
17/5/2017	1	33.19	165.9753869
17/6/2017	1	33.19	169.6574743
17/7/2017	1	33.19	149.1325767
17/8/2017	1	33.19	141.123693
17/9/2017	1	33.19	157.4284091
17/10/2017	1	33.19	150.614683
17/11/2017	1	33.19	155.8565075
17/12/2017	1	33.19	149.5420948
17/1/2018	1	31.37	151.6560698
17/2/2018	1	31.37	124.8380554
17/3/2018	1	31.37	168.4881679
17/4/2018	1	31.37	157.7025835
17/5/2018	1	31.37	175.9046381
17/6/2018	1	31.37	178.3403237
17/7/2018	1	31.37	223.6561374
17/8/2018	1	31.37	180.0526114
17/9/2018	1	31.37	195.988825
17/10/2018	1	31.37	221.7969141
17/11/2018	1	31.37	247.3147665
17/12/2018	1	31.37	270.8802303
17/1/2019	1	33.77	263.3453307
17/2/2019	1	33.77	205.6982687
17/3/2019	1	33.77	250.9757905
17/4/2019	1	33.77	191.5888773
17/5/2019	1	33.77	241.4707898
17/6/2019	1	33.77	316.5279056
17/7/2019	1	33.77	262.0162952
17/8/2019	1	33.77	317.8178408
17/9/2019	1	33.77	273.8698727
17/10/2019	1	33.77	258.4812378
17/11/2019	1	33.77	253.4914123
17/12/2019	1	33.77	266.1575394
17/1/2020	1	45.59	228.0170478
17/2/2020	1	45.59	230.5792029
17/3/2020	1	45.59	356.976704
17/4/2020	1	45.59	359.027983
17/5/2020	1	45.59	431.6293151
17/6/2020	1	45.59	328.6724979
17/7/2020	1	45.59	352.1057149
17/8/2020	1	45.59	301.6853032
17/9/2020	1	45.59	290.0191396
17/10/2020	1	45.59	307.8081476
17/11/2020	1	45.59	368.4571564
17/12/2020	1	45.59	295.6825498
17/1/2021	1	43.73	280.6170065
17/2/2021	1	43.73	215.4135632
17/3/2021	1	43.73	215.2704288
17/4/2021	1	43.73	199.4371476
17/5/2021	1	43.73	190.319996
17/6/2021	1	43.73	178.801245
17/7/2021	1	43.73	205.5256264
17/8/2021	1	43.73	216.4920911
17/9/2021	1	43.73	205.3888224
17/10/2021	1	43.73	195.2901747
17/11/2021	1	43.73	228.0767047
17/12/2021	1	43.73	266.1702001
17/1/2022	1	44.13	232.0608158
17/2/2022	1	44.13	191.9002698
17/3/2022	1	44.13	330.0518633
17/4/2022	1	44.13	303.0238944
17/5/2022	1	44.13	291.2759018
17/6/2022	1	44.13	275.2200013
17/7/2022	1	44.13	317.1823114
17/8/2022	1	44.13	257.1827253
17/9/2022	1	44.13	281.92513
17/10/2022	1	44.13	301.3202716
17/11/2022	1	44.13	332.5035624
17/12/2022	1	44.13	263.563725
17/1/2023	1	45.13	247.3790651
17/2/2023	1	45.13	243.441932
17/3/2023	1	45.13	310.6251426
17/4/2023	1	45.13	231.7783697
17/5/2023	1	45.13	228.3557885
17/5/2008	2	41.55	78.1671764
17/6/2008	2	41.55	88.71156551
17/7/2008	2	41.55	94.62386639
17/8/2008	2	41.55	90.25628369
17/9/2008	2	41.55	167.8154374
17/10/2008	2	41.55	206.0425319
17/11/2008	2	41.55	143.4637941
17/12/2008	2	41.55	145.8841294
17/1/2009	2	40.56	146.2989599
17/2/2009	2	40.56	147.8324335
17/3/2009	2	40.56	132.3191329
17/4/2009	2	40.56	103.6057804
17/5/2009	2	40.56	103.6464375
17/6/2009	2	40.56	109.9066284
17/7/2009	2	40.56	101.2797006
17/8/2009	2	40.56	98.25295428
17/9/2009	2	40.56	99.4154606
17/10/2009	2	40.56	86.35406984
17/11/2009	2	40.56	99.45631204
17/12/2009	2	40.56	98.41018199
17/1/2010	2	36.17	113.0533892
17/2/2010	2	36.17	111.374998
17/3/2010	2	36.17	107.5623321
17/4/2010	2	36.17	103.8260152
17/5/2010	2	36.17	146.9229145
17/6/2010	2	36.17	134.131418
17/7/2010	2	36.17	141.9443299
17/8/2010	2	36.17	121.069976
17/9/2010	2	36.17	132.6676209
17/10/2010	2	36.17	122.8472654
17/11/2010	2	36.17	127.5586595
17/12/2010	2	36.17	130.4620766
17/1/2011	2	32.73	110.5378187
17/2/2011	2	32.73	93.99837031
17/3/2011	2	32.73	127.251416
17/4/2011	2	32.73	115.8967363
17/5/2011	2	32.73	89.15496195
17/6/2011	2	32.73	117.6272763
17/7/2011	2	32.73	156.7766995
17/8/2011	2	32.73	215.0422942
17/9/2011	2	32.73	190.5246478
17/10/2011	2	32.73	166.4254173
17/11/2011	2	32.73	198.1231932
17/12/2011	2	32.73	182.7998454
17/1/2012	2	31.48	161.9961291
17/2/2012	2	31.48	142.6191284
17/3/2012	2	31.48	134.6995838
17/4/2012	2	31.48	127.5277319
17/5/2012	2	31.48	160.4464483
17/6/2012	2	31.48	189.4425436
17/7/2012	2	31.48	160.2275403
17/8/2012	2	31.48	123.0971093
17/9/2012	2	31.48	152.0809791
17/10/2012	2	31.48	159.5541814
17/11/2012	2	31.48	173.7342532
17/12/2012	2	31.48	168.511748
17/1/2013	2	31.31	167.8918869
17/2/2013	2	31.31	125.5674663
17/3/2013	2	31.31	141.5396622
17/4/2013	2	31.31	133.6297578
17/5/2013	2	31.31	106.2872956
17/6/2013	2	31.31	119.5215531
17/7/2013	2	31.31	108.3500438
17/8/2013	2	31.31	118.5749171
17/9/2013	2	31.31	132.7210016
17/10/2013	2	31.31	158.6930179
17/11/2013	2	31.31	96.36528748
17/12/2013	2	31.31	119.3385261
17/1/2014	2	30.47	111.0462013
17/2/2014	2	30.47	98.21535362
17/3/2014	2	30.47	113.5682659
17/4/2014	2	30.47	101.6973428
17/5/2014	2	30.47	104.1855346
17/6/2014	2	30.47	86.67951839
17/7/2014	2	30.47	93.17936195
17/8/2014	2	30.47	99.6378978
17/9/2014	2	30.47	123.5690457
17/10/2014	2	30.47	119.2752895
17/11/2014	2	30.47	114.062693
17/12/2014	2	30.47	111.5614839
17/1/2015	2	32.18	136.2074457
17/2/2015	2	32.18	113.0624447
17/3/2015	2	32.18	103.9277457
17/4/2015	2	32.18	102.1256079
17/5/2015	2	32.18	106.3849656
17/6/2015	2	32.18	117.341851
17/7/2015	2	32.18	128.4748616
17/8/2015	2	32.18	131.1165349
17/9/2015	2	32.18	174.3628331
17/10/2015	2	32.18	125.1895271
17/11/2015	2	32.18	101.8232681
17/12/2015	2	32.18	113.0718169
17/1/2016	2	34.85	149.5762644
17/2/2016	2	34.85	155.8688966
17/3/2016	2	34.85	166.2577496
17/4/2016	2	34.85	144.6225879
17/5/2016	2	34.85	132.8261068
17/6/2016	2	34.85	243.3254
17/7/2016	2	34.85	236.1954322
17/8/2016	2	34.85	143.8483186
17/9/2016	2	34.85	149.0530404
17/10/2016	2	34.85	134.166564
17/11/2016	2	34.85	251.402222
17/12/2016	2	34.85	222.4529313
17/1/2017	2	33.19	265.8841234
17/2/2017	2	33.19	202.1854423
17/3/2017	2	33.19	235.4675576
17/4/2017	2	33.19	181.3023623
17/5/2017	2	33.19	165.9753869
17/6/2017	2	33.19	169.6574743
17/7/2017	2	33.19	149.1325767
17/8/2017	2	33.19	141.123693
17/9/2017	2	33.19	157.4284091
17/10/2017	2	33.19	150.614683
17/11/2017	2	33.19	155.8565075
17/12/2017	2	33.19	149.5420948
17/1/2018	2	31.37	151.6560698
17/2/2018	2	31.37	124.8380554
17/3/2018	2	31.37	168.4881679
17/4/2018	2	31.37	157.7025835
17/5/2018	2	31.37	175.9046381
17/6/2018	2	31.37	178.3403237
17/7/2018	2	31.37	223.6561374
17/8/2018	2	31.37	180.0526114
17/9/2018	2	31.37	195.988825
17/10/2018	2	31.37	221.7969141
17/11/2018	2	31.37	247.3147665
17/12/2018	2	31.37	270.8802303
17/1/2019	2	33.77	263.3453307
17/2/2019	2	33.77	205.6982687
17/3/2019	2	33.77	250.9757905
17/4/2019	2	33.77	191.5888773
17/5/2019	2	33.77	241.4707898
17/6/2019	2	33.77	316.5279056
17/7/2019	2	33.77	262.0162952
17/8/2019	2	33.77	317.8178408
17/9/2019	2	33.77	273.8698727
17/10/2019	2	33.77	258.4812378
17/11/2019	2	33.77	253.4914123
17/12/2019	2	33.77	266.1575394
17/1/2020	2	45.59	228.0170478
17/2/2020	2	45.59	230.5792029
17/3/2020	2	45.59	356.976704
17/4/2020	2	45.59	359.027983
17/5/2020	2	45.59	431.6293151
17/6/2020	2	45.59	328.6724979
17/7/2020	2	45.59	352.1057149
17/8/2020	2	45.59	301.6853032
17/9/2020	2	45.59	290.0191396
17/10/2020	2	45.59	307.8081476
17/11/2020	2	45.59	368.4571564
17/12/2020	2	45.59	295.6825498
17/1/2021	2	43.73	280.6170065
17/2/2021	2	43.73	215.4135632
17/3/2021	2	43.73	215.2704288
17/4/2021	2	43.73	199.4371476
17/5/2021	2	43.73	190.319996
17/6/2021	2	43.73	178.801245
17/7/2021	2	43.73	205.5256264
17/8/2021	2	43.73	216.4920911
17/9/2021	2	43.73	205.3888224
17/10/2021	2	43.73	195.2901747
17/11/2021	2	43.73	228.0767047
17/12/2021	2	43.73	266.1702001
17/1/2022	2	44.13	232.0608158
17/2/2022	2	44.13	191.9002698
17/3/2022	2	44.13	330.0518633
17/4/2022	2	44.13	303.0238944
17/5/2022	2	44.13	291.2759018
17/6/2022	2	44.13	275.2200013
17/7/2022	2	44.13	317.1823114
17/8/2022	2	44.13	257.1827253
17/9/2022	2	44.13	281.92513
17/10/2022	2	44.13	301.3202716
17/11/2022	2	44.13	332.5035624
17/12/2022	2	44.13	263.563725
17/1/2023	2	45.13	247.3790651
17/2/2023	2	45.13	243.441932
17/3/2023	2	45.13	310.6251426
17/4/2023	2	45.13	231.7783697
17/5/2023	2	45.13	228.3557885```

Any assistance with the right code and steps to run a panel VAR using monthly datasets would be appreciated.

Thank you.

Hi @Oluwaseyi1954 ,

Could you also share a data frame or tibble that contains yearly data that you know does work? To do that, you would run

dput(yearly_data)

where yearly_data is a data frame or tibble, and post the output here in a code block.

And it would be helpful if you could do the same with the monthly data that you shared above.

This topic was automatically closed 90 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.