How to interpret very large C.I.'s of variance components?

I'm having trouble understanding what it means to have excessively large C.I. on estimates of variance. I'm using a generalized additive mixed effect model (GAMM), but maybe this effect applies to GLMs as well. All other diagnostics (via package DHARMa) say the model is fine: Pearson correlation between predictor variables is < 0.47, no zero-inflation, no over-dispersion, qq-plot lines up well, no glaring issues in summary output, and seemingly no strong spatial or temporal auto-correlation.

So, based on the results below from mgcv::gam.vcomp, is this model showing signs of being overfit, or is it just having trouble estimating the C.I. of something with almost no effect. As in, nothing to worry about (?)

library(dplyr)
library(mgcv)
library(DHARMa)

toad3 <- subset(toad2, fSite %in% c(1,10,20,30,40), 
                select = c(CYR, fCYR, fSeason, fSite, area_sampled, num))

dput(toad3)

structure(list(CYR = c(2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 
                       2008L, 2008L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 
                       2009L, 2009L, 2009L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 
                       2010L, 2010L, 2010L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 
                       2011L, 2011L, 2011L, 2011L, 2012L, 2012L, 2012L, 2012L, 2012L, 
                       2012L, 2012L, 2012L, 2012L, 2012L, 2013L, 2013L, 2013L, 2013L, 
                       2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2014L, 2014L, 2014L, 
                       2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2015L, 2015L, 2015L, 
                       2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2016L, 2016L, 
                       2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2017L, 
                       2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2018L, 
                       2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 2018L, 
                       2019L, 2019L, 2019L, 2019L, 2019L, 2019L, 2019L, 2019L, 2019L, 
                       2019L, 2020L, 2020L, 2020L, 2020L, 2020L, 2020L, 2020L, 2020L, 
                       2020L, 2020L, 2021L, 2021L, 2021L, 2021L, 2021L, 2022L, 2022L, 
                       2022L, 2022L, 2022L, 2022L, 2022L, 2022L, 2022L, 2023L, 2023L, 
                       2023L, 2023L, 2023L, 2023L, 2023L, 2023L, 2023L, 2023L, 2024L, 
                       2024L, 2024L, 2024L, 2024L), fCYR = structure(c(1L, 1L, 1L, 1L, 
                                                                       1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 
                                                                       3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
                                                                       4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 
                                                                       6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 
                                                                       8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
                                                                       9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 
                                                                       11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 
                                                                       12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
                                                                       13L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 
                                                                       15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
                                                                       17L, 17L, 17L, 17L, 17L), levels = c("2008", "2009", "2010", 
                                                                                                            "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018", 
                                                                                                            "2019", "2020", "2021", "2022", "2023", "2024"), class = "factor"), 
               fSeason = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 
                                     1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 
                                     2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
                                     1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
                                     2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
                                     1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
                                     2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                                     1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
                                     2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                                     2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
                                     2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L), levels = c("DRY", 
                                                                                         "WET"), class = "factor"), fSite = structure(c(10L, 1L, 20L, 
                                                                                                                                        40L, 20L, 30L, 10L, 1L, 40L, 30L, 20L, 10L, 1L, 10L, 1L, 
                                                                                                                                        20L, 30L, 40L, 40L, 30L, 20L, 1L, 1L, 10L, 40L, 30L, 20L, 
                                                                                                                                        30L, 20L, 10L, 1L, 40L, 40L, 30L, 20L, 1L, 10L, 40L, 30L, 
                                                                                                                                        20L, 1L, 10L, 40L, 20L, 30L, 10L, 1L, 40L, 30L, 20L, 10L, 
                                                                                                                                        1L, 40L, 30L, 20L, 10L, 1L, 30L, 20L, 10L, 1L, 40L, 30L, 
                                                                                                                                        20L, 1L, 10L, 40L, 30L, 20L, 10L, 1L, 40L, 20L, 30L, 10L, 
                                                                                                                                        1L, 40L, 30L, 20L, 10L, 1L, 40L, 30L, 20L, 10L, 1L, 1L, 10L, 
                                                                                                                                        40L, 30L, 20L, 40L, 20L, 10L, 1L, 40L, 30L, 20L, 10L, 1L, 
                                                                                                                                        10L, 1L, 40L, 30L, 20L, 10L, 1L, 40L, 30L, 20L, 40L, 30L, 
                                                                                                                                        1L, 20L, 10L, 40L, 30L, 20L, 10L, 1L, 20L, 1L, 10L, 40L, 
                                                                                                                                        30L, 20L, 30L, 40L, 10L, 1L, 40L, 1L, 10L, 20L, 30L, 1L, 
                                                                                                                                        10L, 40L, 30L, 10L, 40L, 20L, 30L, 1L, 40L, 20L, 30L, 1L, 
                                                                                                                                        10L, 30L, 1L, 10L, 40L, 20L), levels = c("1", "2", "3", "4", 
                                                                                                                                                                                 "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
                                                                                                                                                                                 "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", 
                                                                                                                                                                                 "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", 
                                                                                                                                                                                 "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", 
                                                                                                                                                                                 "46", "47"), class = "factor"), area_sampled = c(3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                                                                                                                                                                                                                                  3L, 3L), num = c(0L, 0L, 0L, 0L, 1L, 0L, 5L, 0L, 0L, 0L, 
                                                                                                                                                                                                                                                   0L, 0L, 0L, 1L, 0L, 0L, 0L, 6L, 1L, 0L, 0L, 0L, 0L, 5L, 0L, 
                                                                                                                                                                                                                                                   0L, 1L, 0L, 1L, 0L, 0L, 0L, 6L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 
                                                                                                                                                                                                                                                   0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 4L, 0L, 2L, 0L, 1L, 0L, 1L, 
                                                                                                                                                                                                                                                   0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
                                                                                                                                                                                                                                                   0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 
                                                                                                                                                                                                                                                   0L, 0L, 0L, 1L, 1L, 0L, 2L, 0L, 3L, 0L, 3L, 0L, 0L, 0L, 0L, 
                                                                                                                                                                                                                                                   1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 4L, 0L, 0L, 0L, 0L, 
                                                                                                                                                                                                                                                   2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 5L, 0L, 1L, 0L, 1L, 0L, 
                                                                                                                                                                                                                                                   0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 4L, 0L, 1L, 0L, 0L, 
                                                                                                                                                                                                                                                   0L, 1L, 0L, 0L, 2L, 1L, 0L, 0L, 0L)), row.names = c(1L, 10L, 
                                                                                                                                                                                                                                                                                                       20L, 22L, 31L, 41L, 42L, 52L, 70L, 78L, 86L, 104L, 110L, 115L, 
                                                                                                                                                                                                                                                                                                       126L, 134L, 144L, 154L, 166L, 172L, 185L, 190L, 196L, 197L, 213L, 
                                                                                                                                                                                                                                                                                                       227L, 239L, 248L, 258L, 263L, 271L, 281L, 296L, 309L, 319L, 323L, 
                                                                                                                                                                                                                                                                                                       324L, 342L, 352L, 362L, 369L, 377L, 384L, 400L, 410L, 418L, 424L, 
                                                                                                                                                                                                                                                                                                       432L, 444L, 456L, 462L, 470L, 477L, 486L, 500L, 509L, 517L, 526L, 
                                                                                                                                                                                                                                                                                                       539L, 546L, 554L, 563L, 574L, 585L, 592L, 593L, 618L, 628L, 632L, 
                                                                                                                                                                                                                                                                                                       634L, 642L, 653L, 670L, 680L, 681L, 691L, 709L, 713L, 728L, 732L, 
                                                                                                                                                                                                                                                                                                       739L, 745L, 759L, 769L, 773L, 780L, 798L, 799L, 816L, 819L, 829L, 
                                                                                                                                                                                                                                                                                                       855L, 857L, 865L, 874L, 887L, 894L, 904L, 912L, 921L, 929L, 938L, 
                                                                                                                                                                                                                                                                                                       949L, 961L, 970L, 976L, 982L, 989L, 999L, 1011L, 1024L, 1046L, 
                                                                                                                                                                                                                                                                                                       1047L, 1057L, 1061L, 1072L, 1081L, 1090L, 1099L, 1109L, 1125L, 
                                                                                                                                                                                                                                                                                                       1128L, 1136L, 1139L, 1160L, 1166L, 1176L, 1186L, 1194L, 1204L, 
                                                                                                                                                                                                                                                                                                       1212L, 1220L, 1227L, 1239L, 1249L, 1258L, 1259L, 1269L, 1278L, 
                                                                                                                                                                                                                                                                                                       1296L, 1303L, 1313L, 1323L, 1335L, 1345L, 1355L, 1366L, 1374L, 
                                                                                                                                                                                                                                                                                                       1375L, 1393L, 1403L, 1412L, 1420L, 1430L), class = "data.frame")



# fit model
mod <- gam(num ~ # Abundance
             
             # Long-term annual trend
             s(CYR) +
             # Seasonal variation of annual trend
             s(CYR, by = fSeason) + 
             fSeason +
             
             # Repeated measure / random intercept: "Not all sites have the same abundance"
             s(fSite, bs = "re") + 
             # Random slopes per site: "Sites have their own annual trend"
             s(fSite, CYR, bs = "re") + 
             
             offset(log(area_sampled)), # Area sampled offset term
           
           data = toad2, 
           method = 'REML',
           select = FALSE,
           gamma = 1.4, 
           # 1.4 can be a sensible choice for suppressing over-fitting - S. Wood
           
           family = nb(link = "log"),
           
           control = list(trace = TRUE),
           drop.unused.levels=FALSE)

> mgcv::gam.vcomp(mod)

Standard deviations and 0.95 confidence intervals:

                       std.dev         lower        upper
s(CYR)            0.0056061735 1.153835e-101 2.723888e+96
s(CYR):fSeasonDRY 0.0671182937  7.620192e-03 5.911748e-01
s(CYR):fSeasonWET 0.7120572644  2.750020e-01 1.843716e+00
s(fSite)          0.0182263177  5.112121e-94 6.498255e+89
s(fSite,CYR)      0.0004233687  3.039279e-04 5.897486e-04

Rank: 5/5


> summary(mod)

Family: Negative Binomial(0.329) 
Link function: log 

Formula:
num ~ s(CYR) + s(CYR, by = fSeason) + fSeason + s(fSite, bs = "re") + 
    s(fSite, CYR, bs = "re") + offset(log(area_sampled))

Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -3.2675     0.1834 -17.815  < 2e-16 ***
fSeasonWET    0.5919     0.1793   3.301 0.000965 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
                       edf Ref.df  Chi.sq p-value    
s(CYR)             1.00795  1.012  70.696  <2e-16 ***
s(CYR):fSeasonDRY  1.09186  1.605 110.166  <2e-16 ***
s(CYR):fSeasonWET  6.42196  7.460  76.441  <2e-16 ***
s(fSite)           0.01465 46.000   0.018   0.135    
s(fSite,CYR)      32.10291 46.000 147.831  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Rank: 122/123
R-sq.(adj) =  0.158   Deviance explained = 39.4%
-REML = 629.91  Scale est. = 1         n = 1436



library(DHARMa)
simulationOutput <- simulateResiduals(fittedModel = mod)

plot(simulationOutput)

Rplot