Hi!
I have question in statistical problem. I saw a recent papers that two groups of microbiota data were compared using wilcoxon test, with the FDR adjusted P value.
However, same results was obtained using my microbiota data set (wilcoxon p value and FDR adjusted p value were same).
Is there have a problem in this code? ex, Wilcoxson = wilcox.test(A1$value~A1$TRT, p.adjust.methods = "BH")
Please check this code and give some information.
Since my data is really large, i made simple example set.
~TRT, ~A1, ~A2, ~A3, ~A4, ~A5, ~A6, ~A7, ~A8, ~A9, ~A10, ~A11, ~A12, ~A13, ~A14, ~A15, ~A16,
"CON", 0.640392842, 12.59270509, 0.475865037, 2.417293138, 19.4294682, 2.665350444, 0.642924039, 1.926240919, 2.007239223, 0.610018478, 2.343888425, 0.966917255, 0.54926975, 6.31786772, 0.144278229, 3.060217177,
"CON", 3.709962363, 5.712164273, 0.130578385, 0.094733338, 48.82863507, 0.350769388, 0.640090125, 0.074250454, 0.450623448, 0.312363981, 1.075351409, 1.671915406, 0.40965768, 5.125841719, 0.366131551, 3.978800215,
"CON", 0.133889099, 11.71150688, 0.732600733, 2.23064292, 29.08424908, 4.403183024, 0.239989895, 2.346848554, 1.695086523, 0.560818492, 1.40204623, 2.288745737, 0.553239864, 4.390551977, 0.159151194, 5.497031704,
"CON", 0.202547029, 10.54510469, 1.116540497, 1.311492012, 29.731372, 0.673468871, 0.493708383, 0.962098387, 0.731701142, 0.377243841, 2.0128111, 0.749424007, 1.382383472, 6.435931843, 0.24812011, 3.152138137,
"CON", 0.298749304, 17.18821206, 0.665856499, 1.551977315, 22.66443871, 0.936756291, 0.349384779, 0.488632336, 1.179806572, 0.387361385, 1.898830321, 1.936806927, 1.308927034, 8.286495519, 0.69370601, 1.402602663,
"CON", 0.483703497, 26.80882316, 0.235520551, 0.481171018, 25.28427077, 0.812925773, 0.6888343, 0.458378707, 0.817990731, 0.298832527, 1.063641198, 1.765137893, 0.82052321, 4.176057943, 0.36974194, 1.909489199,
"CON", 0.435608459, 10.34063568, 0.615423579, 0.90667342, 39.51880461, 0.316575915, 0.55717361, 0.222869444, 0.630619222, 0.42547803, 1.39799924, 1.291629733, 0.666075725, 5.956692415, 0.303912878, 3.768519691,
"CON", 0.807043287, 9.226604599, 0.619829484, 1.378804362, 30.52343967, 1.358565031, 1.740582387, 0.339008779, 0.968957927, 0.25046171, 1.148581982, 0.976547676, 0.76403471, 3.018190098, 0.303589951, 1.965744934,
"CON", 0.182750393, 12.74683994, 0.467028783, 0.182750393, 40.71780293, 1.050814762, 0.540636581, 0.439108584, 0.619320778, 0.294431189, 2.378293314, 1.647291741, 0.799532971, 4.695669831, 0.743692573, 2.294532717,
"HIT", 0.167181721, 12.31572015, 0.212776736, 0.764983029, 22.25036729, 2.548254724, 3.16125437, 0.438218755, 1.580627185, 0.096256143, 1.92765591, 1.806069203, 0.306499823, 11.33289427, 1.68194944, 3.508283094,
"HIT", 2.017291066, 11.32008696, 0.546033672, 0.950503059, 34.02093129, 0.950503059, 0.935335457, 0.803882906, 1.718994894, 0.212346428, 1.377723849, 3.003185196, 0.308407907, 3.554274736, 0.197178826, 2.232165428,
"HIT", 1.665990466, 19.49234202, 0.162288265, 0.111573182, 38.34820976, 4.962470839, 1.853636271, 0.26371843, 0.266254184, 0.055786591, 0.773405011, 2.01846029, 0.083679886, 0.988944112, 0.228217872, 1.379450249,
"HIT", 0.668168358, 15.64121384, 0.420136165, 2.467667232, 22.01918453, 0.536559439, 0.592240136, 1.698261244, 1.455290932, 1.61727114, 1.703323125, 1.374300828, 0.658044595, 3.171268761, 0.139201741, 2.584090506,
"HIT", 0.832363508, 11.04589384, 0.242878106, 0.979102363, 25.87663816, 0.371907099, 1.105601376, 0.766584021, 1.300409857, 0.928502758, 4.812022466, 3.544502353, 1.510398219, 4.414815564, 0.485756211, 1.495218337,
"HIT", 0.433537003, 23.37550389, 0.494384301, 0.311842405, 33.85138047, 0.291559973, 1.521182466, 0.147047638, 1.607382806, 0.091270948, 1.564282636, 3.574778795, 0.608472986, 4.421570367, 0.745379408, 0.900032959,
"HIT", 2.604259208, 15.48341244, 0.182755032, 0.045688758, 35.76414448, 0.715790542, 4.035840292, 0.043150494, 1.731096276, 0.055841815, 0.560956418, 2.431657233, 0.213214204, 2.59410615, 0.395969236, 3.233748763,
"HIT", 0.184768028, 13.44503784, 0.164519477, 0.491027361, 24.45265636, 1.445240325, 1.65785011, 0.44799919, 0.726416766, 0.222734061, 1.695816143, 1.832493862, 0.566959427, 3.971247058, 0.531524463, 4.186387912,
"HIT", 6.96603928, 9.303396072, 0.109963175, 0.074161211, 41.75787643, 0.046031097, 1.171235679, 0.112520458, 0.092062193, 0.112520458, 0.480769231, 0.751841244, 0.360576923, 2.36804419, 1.859144845, 1.380932897
library(reshape)
Genus <- read.table("Microbiota.txt",sep="\t",header=TRUE)
#> Warning in file(file, "rt"): cannot open file 'Microbiota.txt': No such file or
#> directory
#> Error in file(file, "rt"): cannot open the connection
Genus
#> Error in eval(expr, envir, enclos): object 'Genus' not found
AM = melt(Genus, id = c("TRT"))
#> Error in melt(Genus, id = c("TRT")): object 'Genus' not found
AM_list = unique(AM$variable)
#> Error in unique(AM$variable): object 'AM' not found
y <- data.frame()
for(i in AM_list){
A1 = subset(AM, variable==i)
Wilcoxson = wilcox.test(A1$value~A1$TRT) #Wilcoxson = wilcox.test(A1$value~A1$TRT, p.adjust.methods = "BH")
Wilcox_P <- data.frame(i,Wilcoxson$p.value)
y <- rbind.data.frame(y,Wilcox_P)
}
#> Error in eval(expr, envir, enclos): object 'AM_list' not found
y
#> data frame with 0 columns and 0 rows
write.table(y, "wilcoxon_result.txt", sep="\t")
Significant <- subset(y, y$Wilcoxson.p.value <0.1)
View(Significant)
#> Error in View(Significant): invalid 'x' argument
nrow(Significant)
#> [1] 0
write.table(Significant, "wilcoxon_result.txt", sep="\t")
Created on 2022-12-14 with reprex v2.0.2```