I want to download the R dataset but it is not letting me. Here is everything I have done so far.
BikeSharing1 <- BikeSharing %>%
mutate(season = factor(season, levels =c(1,2,3,4), labels = c("Spring (baseline)", "Summer", "Autumn", "Winter")))
BikeSharing1 <- BikeSharing1 %>%
mutate(holiday = factor(holiday, levels = c(0, 1), labels = c("no", "yes")),
workingday = factor(workingday, levels = c(0, 1), labels = c("no", "yes")))
BikeSharing1 <- BikeSharing1 %>%
mutate(yr = factor(yr, levels=c(0,1), labels=c("2011 (baseline", "2012")))
BikeSharing1 %>%
mutate(weathersit = factor(weathersit, levels =c(1,2,3,4), labels=c("clear (baseline","mist","light precipitation","heavy precipitation")))
rm(t_max,t_min,a_min,a_max,Hum_min, Hum_max, WS_min, WS_max)
bike_data <- BikeSharing1
# Assuming your dataset is loaded into a dataframe called 'bike_data'
# Extract maximum and minimum values from the dataset
temp_min_data <- min(BikeSharing1$temp)
temp_max_data <- max(BikeSharing1$temp)
atemp_min_data <- min(BikeSharing1$atemp)
atemp_max_data <- max(BikeSharing1$atemp)
max_humidity_data <- max(BikeSharing1$hum)
max_windspeed_data <- max(BikeSharing1$windspeed)
# Values from the codebook
temp_min_codebook <- -8
temp_max_codebook <- 39
atemp_min_codebook <- -16
atemp_max_codebook <- 50
max_humidity_codebook <- 100
max_windspeed_codebook <- 67
bike_data <- subset(bike_data, select = -raw_feel_temp_calculated)
# Calculate raw temperature using values from both the codebook and dataset
bike_data$raw_temp_calculated <- (bike_data$temp - temp_min_codebook) / (temp_max_codebook - temp_min_codebook)
bike_data$raw_atemp_calculated <- (bike_data$atemp - atemp_min_codebook) / (atemp_max_codebook - atemp_min_codebook)
remove(raw_feel_temp_calculated)
# Calculate raw humidity using values from both the codebook and dataset
bike_data$raw_humidity_calculated <- bike_data$hum / max_humidity_data
# Calculate raw windspeed using values from both the codebook and dataset
bike_data$raw_windspeed_calculated <- bike_data$windspeed / max_windspeed_data
# Create a new column to check if casual + registered equals cnt
bike_data$sum_matches_cnt <- (bike_data$casual + bike_data$registered) == bike_data$cnt
# Check if all values in the new column are TRUE
all_matches <- all(bike_data$sum_matches_cnt)
# Print the result
if(all_matches) {
print("Values are Equal")
} else {
print("Does not Match")
}
print(all_matches)
bike_data$dteday <- as.Date(bike_data$dteday, format= "%m/%d/%Y")
class(bike_data$dteday)
and the dataset plus codebook