Sorry about that. My daughter was asked the question at Uni...and doesnt know where to start. I know a bit of R but I'm certainly not a statistician !
She's given me the actual data which is to compare how two different dyes affect 3 different sets of clothing
{Redacted 3 verbatim Homework Q's}
structure(list(Dyes = c("Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1",
"Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Jeans Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1",
"Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "Shirt Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1", "T-Shirts Dye1",
"T-Shirts Dye1", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2", "Jeans Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2", "Shirt Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2", "T-Shirts Dye2",
"T-Shirts Dye2", "T-Shirts Dye2"), Value = c(193.3, 204.3, 129.3,
109.7, 62.9, 108.1, 153.1, 261.2, 126.8, 141.5, 2.1, 129.5, 131.8,
66.5, 164.5, 120.7, 82.2, 55.3, 63.1, 123.8, 89.7, 53.4, 25,
108.7, 99.8, 128.9, 156, 34.9, 119.7, 175.8, 0.3, 116.3, 113.6,
175.2, 60.4, 88.5, 115.7, 214.1, 114.1, 192.2, 94.6, 177.1, 152,
112.9, 160, 100.1, 46.9, 77.9, 109.6, 93, 80.5, 115.9, 96.1,
70.8, 24.3, 77.1, 189.6, 71.4, 101.6, 71.3, 113.3, 101.6, 103.3,
150.3, 171.3, 132.6, 104, 120.4, 142.4, 122.8, 128.6, 121, 136.9,
137.1, 196.8, 166.2, 109.8, 116.6, 200.2, 107, 115.2, 97.1, 152.2,
159.7, 134.2, 128.3, 110.4, 125.2, 105.3, 103.9, 98.6, 106.1,
153.7, 100.9, 100.1, 78.3, 131, 95.7, 38.7, 101.9, 56.4, 181.3,
39.7, 101.4, 42.1, 54.2, 76.8, 129.4, 122.2, 106.8, 159.8, 116.8,
53.3, 138, 33, 104.9, 177.6, 138.2, 136.6, 130.7, 172.6, 178.5,
42.3, 197.2, 259.1, 180.3, 172, 162.9, 161.9, 206.3, 213.4, 134.1,
184.7, 166.6, 169.5, 134.7, 125.9, 28.4, 175.7, 131.8, 200.3,
114.9, 253.7, 93.4, 118.6, 18.1, 90.6, 141.8, 192.2, 156.9, 162.4,
196.9, 228.4, 166.7, 186.5, 176.5, 172.4, 170.3, 147.6, 153.7,
166.8, 180.5, 204.5, 214.2, 135.5, 177.1, 168.2, 186.3, 174.5,
141.6, 156.6, 154.4, 232.4, 225, 209.1, 266.4, 157.5, 162.3,
122.1, 176.6, 146.7, 205.5, 141.6, 145, 155.8, 142.2, 159.2,
187.7, 212.3, 158.2, 170.3, 194, 240.7, 187.3, 200.8, 206.7,
974.3, 1362.8, 1258.6, 2947.3, 5003.3, 2020.8, 2145.1, 2015.6,
2361.4, 6122, 1442, 2296.4, 2399.4, 1971.3, 3528.9, 346, 98.2,
1969.8, 1673.6, 1326.7, 1323.8, 2253.9, 1752.4, 1381.5, 1493.6,
892.9, 456.1, 134.6, 451.2, 98.4, 783.5, 6566.3, 1200.4, 1250.2,
1541.6, 4934.5, 2343.7, 1866.5, 2178.1, 1662.2, 3981.2, 654,
131.2, 893.4, 85.6, 1446.7, 3966.8, 3345.1, 7497.9, 6369.4, 381.6,
386.5, 358.1, 495.7, 478.9, 352.7, 592.4, 495.8, 325.8, 455.9,
314.2, 333, 464.2, 491.4, 351.7, 576, 369.7, 333.6, 314.5, 361.8,
120.3, 321.8, 285.8, 350.7, 285.7, 510.7, 529.8, 596.6, 315.2,
358.6, 348.5, 376.1, 368.7, 216.9, 399.3, 507.2, 356.6, 469.2,
493.9, 252.8, 233.6, 342.7, 286.1, 399, 188.9, 358.8, 382.2,
249.3, 362.2, 246.9)), class = "data.frame", row.names = c(NA,
-296L))