This is where I can't follow the reprex
Please use require
in preference to install.packages
require(NHANES)
#> Loading required package: NHANES
if (require(mosaic)) {
nhanes <-
NHANES %>%
mutate(
SmokingStatus = derivedFactor(
Current = SmokeNow == "Yes",
Former = SmokeNow == "No",
Never = Smoke100 == "No"
)
)
tally( ~SmokingStatus, data = nhanes )
}
#> Loading required package: mosaic
#> Registered S3 method overwritten by 'mosaic':
#> method from
#> fortify.SpatialPolygonsDataFrame ggplot2
#>
#> The 'mosaic' package masks several functions from core packages in order to add
#> additional features. The original behavior of these functions should not be affected by this.
#>
#> Attaching package: 'mosaic'
#> The following objects are masked from 'package:dplyr':
#>
#> count, do, tally
#> The following object is masked from 'package:Matrix':
#>
#> mean
#> The following object is masked from 'package:ggplot2':
#>
#> stat
#> The following objects are masked from 'package:stats':
#>
#> binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
#> quantile, sd, t.test, var
#> The following objects are masked from 'package:base':
#>
#> max, mean, min, prod, range, sample, sum
#> SmokingStatus
#> Current Former Never <NA>
#> 1466 1745 4024 2765
# Can't use complete cases; no data survives
# Project <- nhanes[complete.cases(nhanes),]
# describe(Project) FUNCTION NOT FOUND
Project <- nhanes
str(Project[,c("Depressed", "Gender", "Education", "Poverty", "BMI", "Alcohol12PlusYr", "HardDrugs", "SexOrientation")])
#> tibble [10,000 × 8] (S3: tbl_df/tbl/data.frame)
#> $ Depressed : Factor w/ 3 levels "None","Several",..: 2 2 2 NA 2 NA NA 1 1 1 ...
#> $ Gender : Factor w/ 2 levels "female","male": 2 2 2 2 1 2 2 1 1 1 ...
#> $ Education : Factor w/ 5 levels "8th Grade","9 - 11th Grade",..: 3 3 3 NA 4 NA NA 5 5 5 ...
#> $ Poverty : num [1:10000] 1.36 1.36 1.36 1.07 1.91 1.84 2.33 5 5 5 ...
#> $ BMI : num [1:10000] 32.2 32.2 32.2 15.3 30.6 ...
#> $ Alcohol12PlusYr: Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 2 2 2 ...
#> $ HardDrugs : Factor w/ 2 levels "No","Yes": 2 2 2 NA 2 NA NA 1 1 1 ...
#> $ SexOrientation : Factor w/ 3 levels "Bisexual","Heterosexual",..: 2 2 2 NA 2 NA NA 1 1 1 ...
# Poverty and BMI omitted because they are not factors,
# required for contrasts
Project.Final.glm<-glm(Depressed ~ Gender +
Education +
Alcohol12PlusYr +
HardDrugs +
SexOrientation +
SexOrientation:RegularMarij,
family=binomial, data=Project)
summary(Project.Final.glm)
#>
#> Call:
#> glm(formula = Depressed ~ Gender + Education + Alcohol12PlusYr +
#> HardDrugs + SexOrientation + SexOrientation:RegularMarij,
#> family = binomial, data = Project)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -1.6224 -0.7313 -0.6041 -0.4591 2.2058
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.33406 0.35592 -0.939 0.347947
#> Gendermale -0.58850 0.07683 -7.660 1.86e-14
#> Education9 - 11th Grade -0.17472 0.19871 -0.879 0.379255
#> EducationHigh School -0.46345 0.18901 -2.452 0.014209
#> EducationSome College -0.66960 0.18467 -3.626 0.000288
#> EducationCollege Grad -1.09579 0.18885 -5.803 6.53e-09
#> Alcohol12PlusYrYes 0.14379 0.10416 1.380 0.167454
#> HardDrugsYes 0.66841 0.09637 6.936 4.03e-12
#> SexOrientationHeterosexual -0.32244 0.30394 -1.061 0.288749
#> SexOrientationHomosexual 1.05673 0.42962 2.460 0.013907
#> SexOrientationBisexual:RegularMarijYes 0.98927 0.41322 2.394 0.016664
#> SexOrientationHeterosexual:RegularMarijYes 0.07394 0.09397 0.787 0.431388
#> SexOrientationHomosexual:RegularMarijYes -0.85147 0.48911 -1.741 0.081710
#>
#> (Intercept)
#> Gendermale ***
#> Education9 - 11th Grade
#> EducationHigh School *
#> EducationSome College ***
#> EducationCollege Grad ***
#> Alcohol12PlusYrYes
#> HardDrugsYes ***
#> SexOrientationHeterosexual
#> SexOrientationHomosexual *
#> SexOrientationBisexual:RegularMarijYes *
#> SexOrientationHeterosexual:RegularMarijYes
#> SexOrientationHomosexual:RegularMarijYes .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 4867.2 on 4593 degrees of freedom
#> Residual deviance: 4619.2 on 4581 degrees of freedom
#> (5406 observations deleted due to missingness)
#> AIC: 4645.2
#>
#> Number of Fisher Scoring iterations: 4
# roc is not in namespace
rocplot <- roc(Depressed~fitted(Project.Final.glm), data=Project)
#> Error in roc(Depressed ~ fitted(Project.Final.glm), data = Project): could not find function "roc"
Created on 2020-12-05 by the reprex package (v0.3.0.9001)