I am using iris dataset to create a multivariate classification using Sepal Length, Sepal width, Petal Length, Petal width as features. Species.b is set to true if it is setosa; otherwise false.
df1.mod <- glm (Species.b ~ . , data = df1.train,
family=binomial())
df1.mod %>% summary ()
glm.fit: algorithm did not converge
Observations: 150
Variables: 6
Sepal.Length <dbl> -0.89767388, -1.13920048, -1.38072709, -1.50149039, -1.01843718, -…
Sepal.Width 1.01560199, -0.13153881, 0.32731751, 0.09788935, 1.24503015, 1.933…
Petal.Length <dbl> -1.335752, -1.335752, -1.392399, -1.279104, -1.335752, -1.165809, …
Petal.Width -1.3110521, -1.3110521, -1.3110521, -1.3110521, -1.3110521, -1.048…
Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, setosa, se…
Species.b TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,