Frequency for setting the TS in R

Hey, I have this data where I have entries of the machine 24 hours and each observation is 10 minutes apart. I am running the ARIMA model on it the check the forecast but I a not be able to set the right frequency for setting the ts that's why I can't get the accurate time on the plot generated by the autoplot.

Data:

structure(list(Date = structure(c(1546300800, 1546301400, 1546302000, 
1546302600, 1546303200, 1546303800, 1546304400, 1546305000, 1546305600, 
1546306200, 1546306800, 1546307400, 1546308000, 1546308600, 1546309200, 
1546309800, 1546310400, 1546311000, 1546311600, 1546312200, 1546312800, 
1546313400, 1546314000, 1546314600, 1546315200, 1546315800, 1546316400, 
1546317000, 1546317600, 1546318200, 1546318800, 1546319400, 1546320000, 
1546320600, 1546321200, 1546321800, 1546322400, 1546323000, 1546323600, 
1546324200, 1546324800, 1546325400, 1546326000, 1546326600, 1546327200, 
1546327800, 1546328400, 1546329000, 1546329600, 1546330200, 1546330800, 
1546331400, 1546332000, 1546332600, 1546333200, 1546333800, 1546334400, 
1546335000, 1546335600, 1546336200, 1546336800, 1546337400, 1546338000, 
1546338600, 1546339200, 1546339800, 1546340400, 1546341000, 1546341600, 
1546342200, 1546342800, 1546343400, 1546344000, 1546344600, 1546345200, 
1546345800, 1546346400, 1546347000, 1546347600, 1546348200, 1546348800, 
1546349400, 1546350000, 1546350600, 1546351200, 1546351800, 1546352400, 
1546353000, 1546353600, 1546354200, 1546354800, 1546355400, 1546356000, 
1546356600, 1546357200, 1546357800, 1546358400, 1546359000, 1546359600, 
1546360200, 1546360800, 1546361400, 1546362000, 1546362600, 1546363200, 
1546363800, 1546364400, 1546365000, 1546365600, 1546366200, 1546366800, 
1546367400, 1546368000, 1546368600, 1546369200, 1546369800, 1546370400, 
1546371000, 1546371600, 1546372200, 1546372800, 1546373400, 1546374000, 
1546374600, 1546375200, 1546375800, 1546376400, 1546377000, 1546377600, 
1546378200, 1546378800, 1546379400, 1546380000, 1546380600, 1546381200, 
1546381800, 1546382400, 1546383000, 1546383600, 1546384200, 1546384800, 
1546385400, 1546386000, 1546386600), tzone = "UTC", class = c("POSIXct", 
"POSIXt")), ASA296PDI893 = c(58.7, 58.34, 58.34, 58.56, 58.74, 
58.74, 58.34, 58.74, 58.74, 58.59, 58.74, 58.74, 58.74, 58.06, 
57.95, 57.95, 57.95, 57.95, 58.34, 58.1, 57.95, 58.34, 58.14, 
57.66, 57.95, 57.87, 57.7, 57.95, 57.95, 57.79, 57.95, 57.95, 
57.95, 57.95, 57.95, 57.95, 57.95, 57.95, 57.95, 57.95, 57.82, 
57.55, 57.95, 57.95, 57.95, 57.35, 57.55, 57.55, 57.55, 57.22, 
57.55, 57.55, 57.55, 67.07, 67.07, 67.07, 67.33, 67.87, 67.87, 
68.22, 69.06, 69.06, 68.69, 69.06, 69.85, 69.85, 69.97, 71.04, 
70.5, 60.89, 60.72, 61.44, 62.31, 62.14, 61.92, 61.92, 62.31, 
62.31, 62.31, 62.31, 62.31, 62.61, 63.5, 71.69, 72.89, 73.82, 
73.43, 72.13, 71.84, 73.03, 72.6, 72.54, 73.03, 72.45, 71.84, 
71.46, 71.84, 71.84, 69.96, 62.71, 62.71, 62.41, 62.71, 62.71, 
62.71, 62.71, 62.71, 62.71, 62.31, 62.31, 62.31, 62.31, 61.92, 
61.99, 62.31, 62.01, 61.92, 62.31, 61.9, 62.31, 62.57, 62.71, 
63.66, 63.9, 63.57, 73.43, 73.43, 72.5, 71.84, 71.04, 70.25, 
70.04, 69.85, 69.85, 69.85, 69.85, 69.51, 69.46, 69.85, 69.85, 
68.28, 61.12, 61.12, 60.89)), row.names = c(NA, -144L), class = c("tbl_df", 
"tbl", "data.frame"))```

TS <- ts(sample[,2], start = c(2019))
fit_arima <- auto.arima(TS)
print(summary(fit_arima))
checkresiduals(fit_arima)
fcst1 <- forecast(fit_arima, h = 3)
fcst1
autoplot(fcst1)

See Forecasting: Principles and Practices on the issues involved with sub daily time intervals. You can try creating the ts object with a frequency = 144 argument, but I suspect you will end up using hourly averages, because the high frequency forecast confidence bands grow very wide very quickly.

This topic was automatically closed 42 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.