Frailty Cox model using survey data

Hello,
Please I'm still new in R, and don't understand how to fix some of the error messages in the reproducible data.

I need to run a multilevel analysis (on two levels) using Cox frailty survival model on a survey data. My problems are how to write the survey design using the two weights needed and apply them to the analysis.

I have identified the needed variables for the survey design, which are; primary sampling unit (psu) =~v021, level-1 weight=~wt1_1, level-2 weight=~wt2_1 ,strata=~v022.

Please can someone help me with the svydesign code and how to include it and the weights in a model.

I understand I'm supposed to use svycoxph instead of coxph in my analysis, but I'm lost as to how to write the survey design using the two level weights I need and actually including them in the frailty model below

library(survey)
#> Warning: package 'survey' was built under R version 4.0.5
#> Loading required package: grid
#> Loading required package: Matrix
#> Loading required package: survival
#> Warning: package 'survival' was built under R version 4.0.5
#> 
#> Attaching package: 'survey'
#> The following object is masked from 'package:graphics':
#> 
#>     dotchart
library(survival)
library(frailtypack)
#> Warning: package 'frailtypack' was built under R version 4.0.5
#> Loading required package: boot
#> 
#> Attaching package: 'boot'
#> The following object is masked from 'package:survival':
#> 
#>     aml
#> Loading required package: MASS
#> Loading required package: survC1
#> Warning: package 'survC1' was built under R version 4.0.5
#> Loading required package: doBy
#> Warning: package 'doBy' was built under R version 4.0.5
#> 
#> Attaching package: 'frailtypack'
#> The following object is masked from 'package:survival':
#> 
#>     cluster

datapasta::df_paste (head(rcom, 100)[, c('pid', 'study_time', 'died', 'v021', 'v022', 'v012', 'wt2_1', 'wt1_1', 'v024', 'v025', 'mat_edu')])
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': object 'rcom' not found
data.frame(
         pid = c(1,2,3,4,5,6,7,8,9,10,11,12,13,
                 14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
                 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
                 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
                 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,
                 77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,
                 93,94,95,96,97,98,99,100),
  study_time = c(13,9,17,31,39,22,24,0,23,12,9,35,
                 18,20,60,18,5,46,26,54,37,51,31,55,27,15,39,6,
                 29,0,9,40,23,12,35,56,14,40,57,42,5,42,39,39,
                 54,19,52,42,7,28,53,5,28,13,37,0,23,33,27,36,20,
                 24,58,34,12,44,3,34,14,5,10,40,12,36,19,58,17,
                 40,39,58,53,53,1,50,2,28,24,13,13,50,46,46,19,6,
                 32,59,9,30,30,43),
        died = c(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,
                 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
                 0),
        v021 = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
                 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,
                 3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,
                 4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,
                 5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,
                 6),
        v022 = c("1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","2","2","2","2","2","2","2",
                 "2","2","2"),
        v012 = c(40,37,27,27,24,32,35,35,34,20,28,
                 28,26,24,24,25,26,26,26,26,28,27,25,25,27,26,26,
                 21,21,31,36,36,27,23,32,32,33,33,33,28,25,37,
                 33,34,33,28,28,29,33,33,33,39,38,38,38,38,24,27,
                 35,40,22,38,38,21,30,30,30,39,43,18,23,23,25,25,
                 30,45,26,26,35,35,35,35,32,32,40,25,27,30,30,30,
                 28,28,18,27,30,30,27,21,21,30),
       wt2_1 = c(401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,
                 401.200012207031,401.200012207031,401.200012207031,401.200012207031,
                 631.818176269531,631.818176269531,631.818176269531,
                 631.818176269531,631.818176269531,631.818176269531,631.818176269531,
                 631.818176269531,631.818176269531,631.818176269531),
       wt1_1 = c(2.5074667930603,2.5074667930603,
                 2.5074667930603,2.5074667930603,2.5074667930603,2.5074667930603,
                 2.5074667930603,2.5074667930603,2.5074667930603,2.5074667930603,
                 2.5074667930603,2.5074667930603,2.5074667930603,
                 2.5074667930603,2.5074667930603,5.1194109916687,5.1194109916687,
                 5.1194109916687,5.1194109916687,5.1194109916687,5.1194109916687,
                 5.1194109916687,5.1194109916687,5.1194109916687,
                 5.1194109916687,5.1194109916687,5.1194109916687,5.1194109916687,
                 5.1194109916687,5.1194109916687,5.1194109916687,5.1194109916687,
                 5.1194109916687,5.1194109916687,2.40910983085632,
                 2.40910983085632,2.40910983085632,2.40910983085632,2.40910983085632,
                 2.40910983085632,2.40910983085632,2.40910983085632,
                 2.40910983085632,2.40910983085632,2.40910983085632,2.40910983085632,
                 2.40910983085632,2.40910983085632,1.06203985214233,
                 1.06203985214233,1.06203985214233,1.06203985214233,1.06203985214233,
                 1.06203985214233,1.06203985214233,1.06203985214233,
                 1.06203985214233,1.06203985214233,1.06203985214233,1.06203985214233,
                 1.06203985214233,1.06203985214233,1.06203985214233,
                 1.06203985214233,1.06203985214233,1.06203985214233,1.06203985214233,
                 2.80098295211792,2.80098295211792,2.80098295211792,
                 2.80098295211792,2.80098295211792,2.80098295211792,2.80098295211792,
                 2.80098295211792,2.80098295211792,2.80098295211792,
                 2.80098295211792,2.80098295211792,2.80098295211792,2.80098295211792,
                 2.80098295211792,2.80098295211792,2.80098295211792,
                 2.80098295211792,2.80098295211792,2.80098295211792,2.80098295211792,
                 2.80098295211792,2.80098295211792,1.24210178852081,
                 1.24210178852081,1.24210178852081,1.24210178852081,1.24210178852081,
                 1.24210178852081,1.24210178852081,1.24210178852081,
                 1.24210178852081,1.24210178852081),
        v024 = c("1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1"),
        v025 = c("1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","1","1","1","1","1","1",
                 "1","1","1","1","1","1","2","2","2","2","2","2","2",
                 "2","2","2"),
     mat_edu = c("5","5","5","4","4","5","4","4","4",
                 "4","4","4","5","5","5","5","5","5","4","4","5",
                 "4","4","4","5","3","3","4","4","5","5","5","5","4",
                 "2","2","0","0","0","5","5","0","1","5","5","3",
                 "3","5","5","5","5","5","5","5","5","5","5","4","5",
                 "5","4","5","5","3","4","4","5","3","1","3","3","3",
                 "1","3","2","1","3","3","4","4","0","0","2","2",
                 "1","0","4","4","4","4","0","0","3","4","2","2","3",
                 "3","3","0")
)
#>     pid study_time died v021 v022 v012    wt2_1    wt1_1 v024 v025 mat_edu
#> 1     1         13    0    1    1   40 401.2000 2.507467    1    1       5
#> 2     2          9    0    1    1   37 401.2000 2.507467    1    1       5
#> 3     3         17    0    1    1   27 401.2000 2.507467    1    1       5
#> 4     4         31    0    1    1   27 401.2000 2.507467    1    1       4
#> 5     5         39    0    1    1   24 401.2000 2.507467    1    1       4
#> 6     6         22    0    1    1   32 401.2000 2.507467    1    1       5
#> 7     7         24    0    1    1   35 401.2000 2.507467    1    1       4
#> 8     8          0    1    1    1   35 401.2000 2.507467    1    1       4
#> 9     9         23    0    1    1   34 401.2000 2.507467    1    1       4
#> 10   10         12    0    1    1   20 401.2000 2.507467    1    1       4
#> 11   11          9    0    1    1   28 401.2000 2.507467    1    1       4
#> 12   12         35    0    1    1   28 401.2000 2.507467    1    1       4
#> 13   13         18    0    1    1   26 401.2000 2.507467    1    1       5
#> 14   14         20    0    1    1   24 401.2000 2.507467    1    1       5
#> 15   15         60    0    1    1   24 401.2000 2.507467    1    1       5
#> 16   16         18    0    2    1   25 401.2000 5.119411    1    1       5
#> 17   17          5    0    2    1   26 401.2000 5.119411    1    1       5
#> 18   18         46    0    2    1   26 401.2000 5.119411    1    1       5
#> 19   19         26    0    2    1   26 401.2000 5.119411    1    1       4
#> 20   20         54    0    2    1   26 401.2000 5.119411    1    1       4
#> 21   21         37    0    2    1   28 401.2000 5.119411    1    1       5
#> 22   22         51    0    2    1   27 401.2000 5.119411    1    1       4
#> 23   23         31    0    2    1   25 401.2000 5.119411    1    1       4
#> 24   24         55    0    2    1   25 401.2000 5.119411    1    1       4
#> 25   25         27    0    2    1   27 401.2000 5.119411    1    1       5
#> 26   26         15    0    2    1   26 401.2000 5.119411    1    1       3
#> 27   27         39    0    2    1   26 401.2000 5.119411    1    1       3
#> 28   28          6    0    2    1   21 401.2000 5.119411    1    1       4
#> 29   29         29    0    2    1   21 401.2000 5.119411    1    1       4
#> 30   30          0    1    2    1   31 401.2000 5.119411    1    1       5
#> 31   31          9    0    2    1   36 401.2000 5.119411    1    1       5
#> 32   32         40    0    2    1   36 401.2000 5.119411    1    1       5
#> 33   33         23    0    2    1   27 401.2000 5.119411    1    1       5
#> 34   34         12    0    2    1   23 401.2000 5.119411    1    1       4
#> 35   35         35    0    3    1   32 401.2000 2.409110    1    1       2
#> 36   36         56    0    3    1   32 401.2000 2.409110    1    1       2
#> 37   37         14    0    3    1   33 401.2000 2.409110    1    1       0
#> 38   38         40    0    3    1   33 401.2000 2.409110    1    1       0
#> 39   39         57    0    3    1   33 401.2000 2.409110    1    1       0
#> 40   40         42    0    3    1   28 401.2000 2.409110    1    1       5
#> 41   41          5    0    3    1   25 401.2000 2.409110    1    1       5
#> 42   42         42    0    3    1   37 401.2000 2.409110    1    1       0
#> 43   43         39    0    3    1   33 401.2000 2.409110    1    1       1
#> 44   44         39    0    3    1   34 401.2000 2.409110    1    1       5
#> 45   45         54    0    3    1   33 401.2000 2.409110    1    1       5
#> 46   46         19    0    3    1   28 401.2000 2.409110    1    1       3
#> 47   47         52    0    3    1   28 401.2000 2.409110    1    1       3
#> 48   48         42    0    3    1   29 401.2000 2.409110    1    1       5
#> 49   49          7    0    4    1   33 401.2000 1.062040    1    1       5
#> 50   50         28    0    4    1   33 401.2000 1.062040    1    1       5
#> 51   51         53    0    4    1   33 401.2000 1.062040    1    1       5
#> 52   52          5    1    4    1   39 401.2000 1.062040    1    1       5
#> 53   53         28    0    4    1   38 401.2000 1.062040    1    1       5
#> 54   54         13    0    4    1   38 401.2000 1.062040    1    1       5
#> 55   55         37    0    4    1   38 401.2000 1.062040    1    1       5
#> 56   56          0    1    4    1   38 401.2000 1.062040    1    1       5
#> 57   57         23    0    4    1   24 401.2000 1.062040    1    1       5
#> 58   58         33    0    4    1   27 401.2000 1.062040    1    1       4
#> 59   59         27    0    4    1   35 401.2000 1.062040    1    1       5
#> 60   60         36    1    4    1   40 401.2000 1.062040    1    1       5
#> 61   61         20    0    4    1   22 401.2000 1.062040    1    1       4
#> 62   62         24    0    4    1   38 401.2000 1.062040    1    1       5
#> 63   63         58    0    4    1   38 401.2000 1.062040    1    1       5
#> 64   64         34    0    4    1   21 401.2000 1.062040    1    1       3
#> 65   65         12    0    4    1   30 401.2000 1.062040    1    1       4
#> 66   66         44    0    4    1   30 401.2000 1.062040    1    1       4
#> 67   67          3    0    4    1   30 401.2000 1.062040    1    1       5
#> 68   68         34    0    5    1   39 401.2000 2.800983    1    1       3
#> 69   69         14    0    5    1   43 401.2000 2.800983    1    1       1
#> 70   70          5    0    5    1   18 401.2000 2.800983    1    1       3
#> 71   71         10    0    5    1   23 401.2000 2.800983    1    1       3
#> 72   72         40    0    5    1   23 401.2000 2.800983    1    1       3
#> 73   73         12    0    5    1   25 401.2000 2.800983    1    1       1
#> 74   74         36    0    5    1   25 401.2000 2.800983    1    1       3
#> 75   75         19    0    5    1   30 401.2000 2.800983    1    1       2
#> 76   76         58    0    5    1   45 401.2000 2.800983    1    1       1
#> 77   77         17    0    5    1   26 401.2000 2.800983    1    1       3
#> 78   78         40    0    5    1   26 401.2000 2.800983    1    1       3
#> 79   79         39    0    5    1   35 401.2000 2.800983    1    1       4
#> 80   80         58    0    5    1   35 401.2000 2.800983    1    1       4
#> 81   81         53    0    5    1   35 401.2000 2.800983    1    1       0
#> 82   82         53    0    5    1   35 401.2000 2.800983    1    1       0
#> 83   83          1    0    5    1   32 401.2000 2.800983    1    1       2
#> 84   84         50    0    5    1   32 401.2000 2.800983    1    1       2
#> 85   85          2    0    5    1   40 401.2000 2.800983    1    1       1
#> 86   86         28    0    5    1   25 401.2000 2.800983    1    1       0
#> 87   87         24    0    5    1   27 401.2000 2.800983    1    1       4
#> 88   88         13    0    5    1   30 401.2000 2.800983    1    1       4
#> 89   89         13    0    5    1   30 401.2000 2.800983    1    1       4
#> 90   90         50    0    5    1   30 401.2000 2.800983    1    1       4
#> 91   91         46    0    6    2   28 631.8182 1.242102    1    2       0
#> 92   92         46    0    6    2   28 631.8182 1.242102    1    2       0
#> 93   93         19    0    6    2   18 631.8182 1.242102    1    2       3
#> 94   94          6    0    6    2   27 631.8182 1.242102    1    2       4
#> 95   95         32    0    6    2   30 631.8182 1.242102    1    2       2
#> 96   96         59    0    6    2   30 631.8182 1.242102    1    2       2
#> 97   97          9    0    6    2   27 631.8182 1.242102    1    2       3
#> 98   98         30    0    6    2   21 631.8182 1.242102    1    2       3
#> 99   99         30    0    6    2   21 631.8182 1.242102    1    2       3
#> 100 100         43    0    6    2   30 631.8182 1.242102    1    2       0

Frailty <- coxph (Surv(study_time, died) ~ factor(mat_edu) + v025 + frailty(v021,distribution="gamma"), data=rcom)
#> Error in terms.formula(formula, specials = ss, data = data): object 'rcom' not found

Created on 2022-01-18 by the reprex package (v2.0.1)

Thank you for the anticipated help.

Hi, with your example data, there are not enough factor levels and gives this error:

Error in contrasts<-(*tmp*, value = contr.funs[1 + isOF[nn]]) :
contrasts can be applied only to factors with 2 or more levels

Which could be related to this: r - How to debug "contrasts can be applied only to factors with 2 or more levels" error? - Stack Overflow

Not sure if that is the case with your full dataset though.

1 Like

The example data arguments to Surv() don't seem promising. The two died values of 1 both match study_time of 0. All died values of 0 match non-zero study_time values. This makes it difficult to trace through the arguments to coxph to see where the error is thrown.

This S/O post explains that the source of this error is not always in the data frame, such as rcom, and provides debugging advice.

rcom[,c(3,2)]
   died study_time
1     0         13
2     0          9
3     0         17
4     0         31
5     0         39
6     0         22
7     0         24
8     1          0
9     0         23
10    0         12
11    0          9
12    0         35
13    0         18
14    0         20
15    0         60
16    0         18
17    0          5
18    0         46
19    0         26
20    0         54
21    0         37
22    0         51
23    0         31
24    0         55
25    0         27
26    0         15
27    0         39
28    0          6
29    0         29
30    1          0
31    0          9
32    0         40
33    0         23
34    0         12
35    0         35
36    0         56
37    0         14
38    0         40
39    0         57
40    0         42
41    0          5
42    0         42
43    0         39
44    0         39
45    0         54
46    0         19
47    0         52
48    0         42
49    0          7
50    0         28

Hi,
I have increased the example data to 100, providing both categories for died variable. I hope that provides the relevant information needed.
My dataset is quite large with about 33924 observations.

Thank you.

This seems to work. The warning message can be ignored.

library(survival)
library(frailtypack)
#> Loading required package: boot
#> 
#> Attaching package: 'boot'
#> The following object is masked from 'package:survival':
#> 
#>     aml
#> Loading required package: MASS
#> Loading required package: survC1
#> Loading required package: doBy
#> 
#> Attaching package: 'frailtypack'
#> The following object is masked from 'package:survival':
#> 
#>     cluster

rcom <- data.frame(
  data.frame(
    pid = c(
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
      14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
      30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
      46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
      61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
      77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
      93, 94, 95, 96, 97, 98, 99, 100
    ),
    study_time = c(
      13, 9, 17, 31, 39, 22, 24, 0, 23, 12, 9, 35,
      18, 20, 60, 18, 5, 46, 26, 54, 37, 51, 31, 55, 27, 15, 39, 6,
      29, 0, 9, 40, 23, 12, 35, 56, 14, 40, 57, 42, 5, 42, 39, 39,
      54, 19, 52, 42, 7, 28, 53, 5, 28, 13, 37, 0, 23, 33, 27, 36, 20,
      24, 58, 34, 12, 44, 3, 34, 14, 5, 10, 40, 12, 36, 19, 58, 17,
      40, 39, 58, 53, 53, 1, 50, 2, 28, 24, 13, 13, 50, 46, 46, 19, 6,
      32, 59, 9, 30, 30, 43
    ),
    died = c(
      0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
      0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0
    ),
    v021 = c(
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3,
      3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,
      4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
      5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6,
      6
    ),
    v022 = c(
      "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2",
      "2", "2", "2"
    ),
    v012 = c(
      40, 37, 27, 27, 24, 32, 35, 35, 34, 20, 28,
      28, 26, 24, 24, 25, 26, 26, 26, 26, 28, 27, 25, 25, 27, 26, 26,
      21, 21, 31, 36, 36, 27, 23, 32, 32, 33, 33, 33, 28, 25, 37,
      33, 34, 33, 28, 28, 29, 33, 33, 33, 39, 38, 38, 38, 38, 24, 27,
      35, 40, 22, 38, 38, 21, 30, 30, 30, 39, 43, 18, 23, 23, 25, 25,
      30, 45, 26, 26, 35, 35, 35, 35, 32, 32, 40, 25, 27, 30, 30, 30,
      28, 28, 18, 27, 30, 30, 27, 21, 21, 30
    ),
    wt2_1 = c(
      401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031,
      401.200012207031, 401.200012207031, 401.200012207031, 401.200012207031,
      631.818176269531, 631.818176269531, 631.818176269531,
      631.818176269531, 631.818176269531, 631.818176269531, 631.818176269531,
      631.818176269531, 631.818176269531, 631.818176269531
    ),
    wt1_1 = c(
      2.5074667930603, 2.5074667930603,
      2.5074667930603, 2.5074667930603, 2.5074667930603, 2.5074667930603,
      2.5074667930603, 2.5074667930603, 2.5074667930603, 2.5074667930603,
      2.5074667930603, 2.5074667930603, 2.5074667930603,
      2.5074667930603, 2.5074667930603, 5.1194109916687, 5.1194109916687,
      5.1194109916687, 5.1194109916687, 5.1194109916687, 5.1194109916687,
      5.1194109916687, 5.1194109916687, 5.1194109916687,
      5.1194109916687, 5.1194109916687, 5.1194109916687, 5.1194109916687,
      5.1194109916687, 5.1194109916687, 5.1194109916687, 5.1194109916687,
      5.1194109916687, 5.1194109916687, 2.40910983085632,
      2.40910983085632, 2.40910983085632, 2.40910983085632, 2.40910983085632,
      2.40910983085632, 2.40910983085632, 2.40910983085632,
      2.40910983085632, 2.40910983085632, 2.40910983085632, 2.40910983085632,
      2.40910983085632, 2.40910983085632, 1.06203985214233,
      1.06203985214233, 1.06203985214233, 1.06203985214233, 1.06203985214233,
      1.06203985214233, 1.06203985214233, 1.06203985214233,
      1.06203985214233, 1.06203985214233, 1.06203985214233, 1.06203985214233,
      1.06203985214233, 1.06203985214233, 1.06203985214233,
      1.06203985214233, 1.06203985214233, 1.06203985214233, 1.06203985214233,
      2.80098295211792, 2.80098295211792, 2.80098295211792,
      2.80098295211792, 2.80098295211792, 2.80098295211792, 2.80098295211792,
      2.80098295211792, 2.80098295211792, 2.80098295211792,
      2.80098295211792, 2.80098295211792, 2.80098295211792, 2.80098295211792,
      2.80098295211792, 2.80098295211792, 2.80098295211792,
      2.80098295211792, 2.80098295211792, 2.80098295211792, 2.80098295211792,
      2.80098295211792, 2.80098295211792, 1.24210178852081,
      1.24210178852081, 1.24210178852081, 1.24210178852081, 1.24210178852081,
      1.24210178852081, 1.24210178852081, 1.24210178852081,
      1.24210178852081, 1.24210178852081
    ),
    v024 = c(
      "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1"
    ),
    v025 = c(
      "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
      "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2",
      "2", "2", "2"
    ),
    mat_edu = c(
      "5", "5", "5", "4", "4", "5", "4", "4", "4",
      "4", "4", "4", "5", "5", "5", "5", "5", "5", "4", "4", "5",
      "4", "4", "4", "5", "3", "3", "4", "4", "5", "5", "5", "5", "4",
      "2", "2", "0", "0", "0", "5", "5", "0", "1", "5", "5", "3",
      "3", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "4", "5",
      "5", "4", "5", "5", "3", "4", "4", "5", "3", "1", "3", "3", "3",
      "1", "3", "2", "1", "3", "3", "4", "4", "0", "0", "2", "2",
      "1", "0", "4", "4", "4", "4", "0", "0", "3", "4", "2", "2", "3",
      "3", "3", "0"
    )
  )
)

Frailty <- coxph(Surv(study_time, died) ~ factor(mat_edu) + v025 + frailty(v021, distribution = "gamma"), data = rcom)
#> Warning in coxpenal.fit(X, Y, istrat, offset, init = init, control, weights =
#> weights, : Inner loop failed to coverge for iterations 2 3 4

Frailty
#> Call:
#> coxph(formula = Surv(study_time, died) ~ factor(mat_edu) + v025 + 
#>     frailty(v021, distribution = "gamma"), data = rcom)
#> 
#>                                coef  se(coef)       se2     Chisq DF    p
#> factor(mat_edu)1          -4.82e-01  1.15e+05  1.15e+05  1.76e-11  1 1.00
#> factor(mat_edu)2          -2.00e-02  9.81e+04  9.81e+04  4.17e-14  1 1.00
#> factor(mat_edu)3          -1.82e-01  7.97e+04  7.97e+04  5.20e-12  1 1.00
#> factor(mat_edu)4           2.09e+01  5.92e+04  5.92e+04  1.25e-07  1 1.00
#> factor(mat_edu)5           2.20e+01  5.92e+04  5.92e+04  1.38e-07  1 1.00
#> v0252                     -1.83e+01  5.32e+04  5.32e+04  1.18e-07  1 1.00
#> frailty(v021, distributio                                1.25e-06  0 0.97
#> 
#> Iterations: 6 outer, 83 Newton-Raphson
#>      Variance of random effect= 5e-07   I-likelihood = -18.8 
#> Degrees of freedom for terms= 4 1 0 
#> Likelihood ratio test=6.42  on 5 df, p=0.3
#> n= 100, number of events= 5

Good to know that it worked.
Can I get help on writing the survey design with the two weights provided above (individual-level and cluster-level), and using them in a frailty model?

Thank you

That's something I can't help with. I suggest using the reprex in my answer to pose that question to StackOverFlow

Thanks, doing that now.

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.