Thinking about it more, nearly identical becomes illusive.
{n \choose k} for n = 9 & k = 3 is 79
There are 79 combinations of 9 elements taken three at a time without regard to order. There are only a few rows that don't overlap (two common elements) with at least two other rows that do not overlap with each other.
(p <- t(combn(seq(0.1,0.9,0.1),3)))
#> [,1] [,2] [,3]
#> [1,] 0.1 0.2 0.3
#> [2,] 0.1 0.2 0.4
#> [3,] 0.1 0.2 0.5
#> [4,] 0.1 0.2 0.6
#> [5,] 0.1 0.2 0.7
#> [6,] 0.1 0.2 0.8
#> [7,] 0.1 0.2 0.9
#> [8,] 0.1 0.3 0.4
#> [9,] 0.1 0.3 0.5
#> [10,] 0.1 0.3 0.6
#> [11,] 0.1 0.3 0.7
#> [12,] 0.1 0.3 0.8
#> [13,] 0.1 0.3 0.9
#> [14,] 0.1 0.4 0.5
#> [15,] 0.1 0.4 0.6
#> [16,] 0.1 0.4 0.7
#> [17,] 0.1 0.4 0.8
#> [18,] 0.1 0.4 0.9
#> [19,] 0.1 0.5 0.6
#> [20,] 0.1 0.5 0.7
#> [21,] 0.1 0.5 0.8
#> [22,] 0.1 0.5 0.9
#> [23,] 0.1 0.6 0.7
#> [24,] 0.1 0.6 0.8
#> [25,] 0.1 0.6 0.9
#> [26,] 0.1 0.7 0.8
#> [27,] 0.1 0.7 0.9
#> [28,] 0.1 0.8 0.9
#> [29,] 0.2 0.3 0.4
#> [30,] 0.2 0.3 0.5
#> [31,] 0.2 0.3 0.6
#> [32,] 0.2 0.3 0.7
#> [33,] 0.2 0.3 0.8
#> [34,] 0.2 0.3 0.9
#> [35,] 0.2 0.4 0.5
#> [36,] 0.2 0.4 0.6
#> [37,] 0.2 0.4 0.7
#> [38,] 0.2 0.4 0.8
#> [39,] 0.2 0.4 0.9
#> [40,] 0.2 0.5 0.6
#> [41,] 0.2 0.5 0.7
#> [42,] 0.2 0.5 0.8
#> [43,] 0.2 0.5 0.9
#> [44,] 0.2 0.6 0.7
#> [45,] 0.2 0.6 0.8
#> [46,] 0.2 0.6 0.9
#> [47,] 0.2 0.7 0.8
#> [48,] 0.2 0.7 0.9
#> [49,] 0.2 0.8 0.9
#> [50,] 0.3 0.4 0.5
#> [51,] 0.3 0.4 0.6
#> [52,] 0.3 0.4 0.7
#> [53,] 0.3 0.4 0.8
#> [54,] 0.3 0.4 0.9
#> [55,] 0.3 0.5 0.6
#> [56,] 0.3 0.5 0.7
#> [57,] 0.3 0.5 0.8
#> [58,] 0.3 0.5 0.9
#> [59,] 0.3 0.6 0.7
#> [60,] 0.3 0.6 0.8
#> [61,] 0.3 0.6 0.9
#> [62,] 0.3 0.7 0.8
#> [63,] 0.3 0.7 0.9
#> [64,] 0.3 0.8 0.9
#> [65,] 0.4 0.5 0.6
#> [66,] 0.4 0.5 0.7
#> [67,] 0.4 0.5 0.8
#> [68,] 0.4 0.5 0.9
#> [69,] 0.4 0.6 0.7
#> [70,] 0.4 0.6 0.8
#> [71,] 0.4 0.6 0.9
#> [72,] 0.4 0.7 0.8
#> [73,] 0.4 0.7 0.9
#> [74,] 0.4 0.8 0.9
#> [75,] 0.5 0.6 0.7
#> [76,] 0.5 0.6 0.8
#> [77,] 0.5 0.6 0.9
#> [78,] 0.5 0.7 0.8
#> [79,] 0.5 0.7 0.9
#> [80,] 0.5 0.8 0.9
#> [81,] 0.6 0.7 0.8
#> [82,] 0.6 0.7 0.9
#> [83,] 0.6 0.8 0.9
#> [84,] 0.7 0.8 0.9
p1 <- p[1:7,]
p2 <- p[8:13,]
p3 <- p[14:18,]
p4 <- p[19:22,]
p5 <- p[23:25,]
p6 <- p[26:28,]
p7 <- p[29:34,]
p8 <- p[35:39,]
p9 <- p[40:43,]
p10 <- p[44:46,]
p11 <- p[47:48,]
p12 <- p[49,]
p13 <- p[50:54,]
p14 <- p[55:58,]
p13 <- p[59:61,]
p14 <- p[62:63,]
p15 <- p[64,]
p16 <- p[65:68,]
p17 <- p[69:71,]
p18 <- p[72:73,]
p19 <- p[74,]
p20 <- p[75:77,]
p21 <- p[78:79,]
p22 <- p[80,]
p23 <- p[81:82,]
p24 <- p[83:84,]
(t(combn(seq(0.1,0.9,0.2),3)))
#> [,1] [,2] [,3]
#> [1,] 0.1 0.3 0.5
#> [2,] 0.1 0.3 0.7
#> [3,] 0.1 0.3 0.9
#> [4,] 0.1 0.5 0.7
#> [5,] 0.1 0.5 0.9
#> [6,] 0.1 0.7 0.9
#> [7,] 0.3 0.5 0.7
#> [8,] 0.3 0.5 0.9
#> [9,] 0.3 0.7 0.9
#> [10,] 0.5 0.7 0.9