Here's a more complete example that shows you how to calculate the density values for each estimated distribution and put them in a data frame. Then you can create your own plot and structure it exactly how you want.
library(fitdistrplus)
#> Loading required package: MASS
#> Loading required package: survival
library(tidyverse)
theme_set(theme_bw())
# Fake data
set.seed(3)
data = rgamma(1000, 6.6, 2.3)
# Create distributions
dists = list(Gamma="gamma", Normal="norm", Lognormal="lnorm") %>%
map(~fitdist(data, distr=.x, method="mle"))
# Look at structure of one of the distribution objects so we know where to
# get its density function name (the "distname") and the values for the
# location and scale parameters (the "estimate")
str(dists[["Gamma"]])
#> List of 17
#> $ estimate : Named num [1:2] 6.78 2.39
#> ..- attr(*, "names")= chr [1:2] "shape" "rate"
#> $ method : chr "mle"
#> $ sd : Named num [1:2] 0.296 0.108
#> ..- attr(*, "names")= chr [1:2] "shape" "rate"
#> $ cor : num [1:2, 1:2] 1 0.963 0.963 1
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:2] "shape" "rate"
#> .. ..$ : chr [1:2] "shape" "rate"
#> $ vcov : num [1:2, 1:2] 0.0876 0.0309 0.0309 0.0117
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:2] "shape" "rate"
#> .. ..$ : chr [1:2] "shape" "rate"
#> $ loglik : num -1453
#> $ aic : num 2910
#> $ bic : num 2920
#> $ n : int 1000
#> $ data : num [1:1000] 1.72 2.19 1.56 3.02 2.67 ...
#> $ distname : chr "gamma"
#> $ fix.arg : NULL
#> $ fix.arg.fun: NULL
#> $ dots : NULL
#> $ convergence: int 0
#> $ discrete : logi FALSE
#> $ weights : NULL
#> - attr(*, "class")= chr "fitdist"
# Vector of values at which we want to get density
xvals = seq(min(data), max(data), length.out=100)
# Use each distribution's location and scale parameters to create a data frame of
# values to plot
dist.vals = map_df(dists,
~{
# Get desired density function
fun = paste0("d", .x$distname)
fun = match.fun(fun)
# Get density values for that function
fun(xvals, .x$estimate[1], .x$estimate[2])
})
dist.vals = data.frame(xvals, dist.vals) %>%
pivot_longer(-xvals, names_to="Distribution", values_to="Density")
dist.vals %>%
ggplot() +
geom_histogram(data=data.frame(x=data), aes(x=x, y=after_stat(density)),
breaks=seq(floor(min(data)), ceiling(max(data)), 0.5),
colour="white", fill="grey80",
) +
geom_line(aes(xvals, Density, colour=Distribution)) +
scale_x_continuous(breaks=0:10)

Created on 2025-04-04 with reprex v2.1.1