0
Version: RStudio 2022.07.0+548 "Spotted Wakerobin" Release (34ea3031089fa4e38738a9256d6fa6d70629c822, 2022-07-06) for macOS Mozilla/5.0 (Macintosh; Intel Mac OS X 12_4_0) AppleWebKit/537.36 (KHTML, like Gecko) QtWebEngine/5.12.10 Chrome/69.0.3497.128 Safari/537.36
Hi,
I have a data set containing dates in julian days, and snow precipitation in different time periods (e.g. hebd_04_a_snow). My goal is to determine if there's a relationship between a date and it's corresponding snow precipitation value. I know how to get my r2 value, my p value, etc. by the summary() function :
regression <- lm (date_test$datesJulian ~ datesponte$hebd_04_a_snow)
summary(regression)
Call: lm(formula = date_test$datesJulian ~ datesponte$hebd_04_a_snow)
Residuals:
Min 1Q Median 3Q Max
-15.4346 -3.0864 -0.8205 1.1795 16.5654
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 133.4346 1.7879 74.632 <2e-16 ***
datesponte$hebd_04_a_snow 0.7199 0.7663 0.939 0.355
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.005 on 29 degrees of freedom
Multiple R-squared: 0.02953, Adjusted R-squared: -0.003934
F-statistic: 0.8824 on 1 and 29 DF, p-value: 0.3553
The thing is that I'll have more than 150 climate values just like «hebd_04_a_snow» column to determine if there's strong relationship or not.
In the following lines, I provide columns of climate values just like the ones I'm using:
structure(list(datesJulian = c(151L, 132L, 132L, 132L, 131L,
132L, 134L, 137L, 131L, 135L, 134L, 130L, 133L, 140L, 135L, 132L,
132L, 137L, 140L, 138L, 135L, 137L, 140L, 131L, 150L, 133L, 134L,
140L, 128L, 118L, 134L), hebd_04_a_snow = c(3.14285714285714,
0.914285714285714, 2.02857142857143, 3.31428571428571, 3.31428571428571,
2.28571428571429, 0, 3.31428571428571, 0.914285714285714, 3.31428571428571,
2.02857142857143, 0.314285714285714, 3.31428571428571, 2.4, 2.2,
3.14285714285714, 3.14285714285714, 3.31428571428571, 3.31428571428571,
3.31428571428571, 2.4, 3.31428571428571, 0, 0, 0, 2.94285714285714,
0, 0, 0, 0, 0), hebd_05_a_snow = c(0, 0, 0, 0, 0, NA, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), bihe_04_a_snow = c(1.81428571428571, 0.6, 1.9, 2.12857142857143,
2.22857142857143, 2.34285714285714, 0, 2.12857142857143, 0.6,
2.12857142857143, 1.9, 0.157142857142857, 2.12857142857143, 1.27142857142857,
2, 1.81428571428571, 1.81428571428571, 2.12857142857143, 2.22857142857143,
2.12857142857143, 1.27142857142857, 2.22857142857143, 0.0571428571428571,
0, 0.0571428571428571, 1.47142857142857, 0.0571428571428571,
0, 0, 0, 0), bihe_05_a_snow = c(0, 0, 0, 0.214285714285714, 0,
NA, 0, 0.214285714285714, 0, 0.214285714285714, 0, 0, 0.214285714285714,
0, 0, 0, 0, 0.214285714285714, 0, 0.214285714285714, 0, 0, 0.228571428571429,
0, 0.228571428571429, 0, 0.228571428571429, 0, 0, 0, 0), mens_4_snow = c(0.907142857142857,
0.3, 0.95, 1.17142857142857, 1.22142857142857, 1.49285714285714,
0.407142857142857, 1.17142857142857, 0.3, 1.17142857142857, 0.95,
0.792857142857143, 1.17142857142857, 1.30714285714286, 1.07142857142857,
0.907142857142857, 0.907142857142857, 1.17142857142857, 1.22142857142857,
1.17142857142857, 1.30714285714286, 1.22142857142857, 0.371428571428571,
0.407142857142857, 0.371428571428571, 0.735714285714286, 0.371428571428571,
0.171428571428571, 0.171428571428571, 0.171428571428571, 0.171428571428571
)), row.names = c(NA, -31L), class = c("tbl_df", "tbl", "data.frame"
))
In summary, is there an effective way to figure out which set of date is correlated to my date values ?