Error plot SurvCART Algorithm in library LongCART

> heart_failure_clinical <-read.csv(file.choose(),header = TRUE)
> heart_failure_clinical
   id age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets
1   1  75       0                      582        0                20                   1    265000
2   2  55       0                     7861        0                38                   0    263358
3   3  65       0                      146        0                20                   0    162000
4   4  50       1                      111        0                20                   0    210000
5   5  65       1                      160        1                20                   0    327000
6   6  90       1                       47        0                40                   1    204000
7   7  75       1                      246        0                15                   0    127000
8   8  60       1                      315        1                60                   0    454000
9   9  65       0                      157        0                65                   0    263358
10 10  80       1                      123        0                35                   1    388000
11 11  75       1                       81        0                38                   1    368000
12 12  62       0                      231        0                25                   1    253000
13 13  45       1                      981        0                30                   0    136000
14 14  50       1                      168        0                38                   1    276000
15 15  49       1                       80        0                30                   1    427000
16 16  82       1                      379        0                50                   0     47000
17 17  87       1                      149        0                38                   0    262000
18 18  45       0                      582        0                14                   0    166000
19 19  70       1                      125        0                25                   1    237000
20 20  48       1                      582        1                55                   0     87000
21 21  65       1                       52        0                25                   1    276000
22 22  65       1                      128        1                30                   1    297000
23 23  68       1                      220        0                35                   1    289000
24 24  53       0                       63        1                60                   0    368000
25 25  75       0                      582        1                30                   1    263358
26 26  80       0                      148        1                38                   0    149000
27 27  95       1                      112        0                40                   1    196000
28 28  70       0                      122        1                45                   1    284000
29 29  58       1                       60        0                38                   0    153000
30 30  82       0                       70        1                30                   0    200000
31 31  94       0                      582        1                38                   1    263358
32 32  85       0                       23        0                45                   0    360000
33 33  50       1                      249        1                35                   1    319000
34 34  50       1                      159        1                30                   0    302000
35 35  65       0                       94        1                50                   1    188000
36 36  69       0                      582        1                35                   0    228000
37 37  90       1                       60        1                50                   0    226000
38 38  82       1                      855        1                50                   1    321000
39 39  60       0                     2656        1                30                   0    305000
40 40  60       0                      235        1                38                   0    329000
41 41  70       0                      582        0                20                   1    263358
42 42  50       0                      124        1                30                   1    153000
43 43  70       0                      571        1                45                   1    185000
44 44  72       0                      127        1                50                   1    218000
45 45  60       1                      588        1                60                   0    194000
46 46  50       0                      582        1                38                   0    310000
47 47  51       0                     1380        0                25                   1    271000
48 48  60       0                      582        1                38                   1    451000
49 49  80       1                      553        0                20                   1    140000
50 50  57       1                      129        0                30                   0    395000
51 51  68       1                      577        0                25                   1    166000
52 52  53       1                       91        0                20                   1    418000
53 53  60       0                     3964        1                62                   0    263358
54 54  70       1                       69        1                50                   1    351000
55 55  60       1                      260        1                38                   0    255000
56 56  95       1                      371        0                30                   0    461000
57 57  70       1                       75        0                35                   0    223000
58 58  60       1                      607        0                40                   0    216000
59 59  49       0                      789        0                20                   1    319000
60 60  72       0                      364        1                20                   1    254000
61 61  45       0                     7702        1                25                   1    390000
62 62  50       0                      318        0                40                   1    216000
63 63  55       0                      109        0                35                   0    254000
64 64  45       0                      582        0                35                   0    385000
65 65  45       0                      582        0                80                   0    263358
66 66  60       0                       68        0                20                   0    119000
67 67  42       1                      250        1                15                   0    213000
68 68  72       1                      110        0                25                   0    274000
69 69  70       0                      161        0                25                   0    244000
70 70  65       0                      113        1                25                   0    497000
71 71  41       0                      148        0                40                   0    374000
   serum_creatinine serum_sodium gender smoking time DEATH_EVENT
1              1.90          130      1       0    4           1
2              1.10          136      1       0    6           1
3              1.30          129      1       1    7           1
4              1.90          137      1       0    7           1
5              2.70          116      0       0    8           1
6              2.10          132      1       1    8           1
7              1.20          137      1       0   10           1
8              1.10          131      1       1   10           1
9              1.50          138      0       0   10           1
10             9.40          133      1       1   10           1
11             4.00          131      1       1   10           1
12             0.90          140      1       1   10           1
13             1.10          137      1       0   11           1
14             1.10          137      1       0   11           1
15             1.00          138      0       0   12           0
16             1.30          136      1       0   13           1
17             0.90          140      1       0   14           1
18             0.80          127      1       0   14           1
19             1.00          140      0       0   15           1
20             1.90          121      0       0   15           1
21             1.30          137      0       0   16           0
22             1.60          136      0       0   20           1
23             0.90          140      1       1   20           1
24             0.80          135      1       0   22           0
25             1.83          134      0       0   23           1
26             1.90          144      1       1   23           1
27             1.00          138      0       0   24           1
28             1.30          136      1       1   26           1
29             5.80          134      1       0   26           1
30             1.20          132      1       1   26           1
31             1.83          134      1       0   27           1
32             3.00          132      1       0   28           1
33             1.00          128      0       0   28           1
34             1.20          138      0       0   29           0
35             1.00          140      1       0   29           1
36             3.50          134      1       0   30           1
37             1.00          134      1       0   30           1
38             1.00          145      0       0   30           1
39             2.30          137      1       0   30           0
40             3.00          142      0       0   30           1
41             1.83          134      1       1   31           1
42             1.20          136      0       1   32           1
43             1.20          139      1       1   33           1
44             1.00          134      1       0   33           0
45             1.10          142      0       0   33           1
46             1.90          135      1       1   35           1
47             0.90          130      1       0   38           1
48             0.60          138      1       1   40           1
49             4.40          133      1       0   41           1
50             1.00          140      0       0   42           1
51             1.00          138      1       0   43           1
52             1.40          139      0       0   43           1
53             6.80          146      0       0   43           1
54             1.00          134      0       0   44           1
55             2.20          132      0       1   45           1
56             2.00          132      1       0   50           1
57             2.70          138      1       1   54           0
58             0.60          138      1       1   54           0
59             1.10          136      1       1   55           1
60             1.30          136      1       1   59           1
61             1.00          139      1       0   60           1
62             2.30          131      0       0   60           1
63             1.10          139      1       1   60           0
64             1.00          145      1       0   61           1
65             1.18          137      0       0   63           0
66             2.90          127      1       1   64           1
67             1.30          136      0       0   65           1
68             1.00          140      1       1   65           1
69             1.20          142      0       0   66           1
70             1.83          135      1       0   67           1
71             0.80          140      1       1   68           0
 [ reached 'max' / getOption("max.print") -- omitted 228 rows ]
> 
> # Show data types
> str(heart_failure_clinical)
'data.frame':	299 obs. of  14 variables:
 $ id                      : int  1 2 3 4 5 6 7 8 9 10 ...
 $ age                     : int  75 55 65 50 65 90 75 60 65 80 ...
 $ anaemia                 : int  0 0 0 1 1 1 1 1 0 1 ...
 $ creatinine_phosphokinase: int  582 7861 146 111 160 47 246 315 157 123 ...
 $ diabetes                : int  0 0 0 0 1 0 0 1 0 0 ...
 $ ejection_fraction       : int  20 38 20 20 20 40 15 60 65 35 ...
 $ high_blood_pressure     : int  1 0 0 0 0 1 0 0 0 1 ...
 $ platelets               : num  265000 263358 162000 210000 327000 ...
 $ serum_creatinine        : num  1.9 1.1 1.3 1.9 2.7 2.1 1.2 1.1 1.5 9.4 ...
 $ serum_sodium            : int  130 136 129 137 116 132 137 131 138 133 ...
 $ gender                  : int  1 1 1 1 0 1 1 1 0 1 ...
 $ smoking                 : int  0 0 1 0 0 1 0 1 0 1 ...
 $ time                    : int  4 6 7 7 8 8 10 10 10 10 ...
 $ DEATH_EVENT             : int  1 1 1 1 1 1 1 1 1 1 ...
> 
> # Descriptive Statistic
> summary(heart_failure_clinical)
       id             age           anaemia       creatinine_phosphokinase    diabetes     
 Min.   :  1.0   Min.   :40.00   Min.   :0.0000   Min.   :  23.0           Min.   :0.0000  
 1st Qu.: 75.5   1st Qu.:51.00   1st Qu.:0.0000   1st Qu.: 116.5           1st Qu.:0.0000  
 Median :150.0   Median :60.00   Median :0.0000   Median : 250.0           Median :0.0000  
 Mean   :150.0   Mean   :60.84   Mean   :0.4314   Mean   : 581.8           Mean   :0.4181  
 3rd Qu.:224.5   3rd Qu.:70.00   3rd Qu.:1.0000   3rd Qu.: 582.0           3rd Qu.:1.0000  
 Max.   :299.0   Max.   :95.00   Max.   :1.0000   Max.   :7861.0           Max.   :1.0000  
 ejection_fraction high_blood_pressure   platelets      serum_creatinine  serum_sodium  
 Min.   :14.00     Min.   :0.0000      Min.   : 25100   Min.   :0.500    Min.   :113.0  
 1st Qu.:30.00     1st Qu.:0.0000      1st Qu.:212500   1st Qu.:0.900    1st Qu.:134.0  
 Median :38.00     Median :0.0000      Median :262000   Median :1.100    Median :137.0  
 Mean   :38.08     Mean   :0.3512      Mean   :263358   Mean   :1.394    Mean   :136.6  
 3rd Qu.:45.00     3rd Qu.:1.0000      3rd Qu.:303500   3rd Qu.:1.400    3rd Qu.:140.0  
 Max.   :80.00     Max.   :1.0000      Max.   :850000   Max.   :9.400    Max.   :148.0  
     gender          smoking            time        DEATH_EVENT    
 Min.   :0.0000   Min.   :0.0000   Min.   :  4.0   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.: 73.0   1st Qu.:0.0000  
 Median :1.0000   Median :0.0000   Median :115.0   Median :0.0000  
 Mean   :0.6488   Mean   :0.3211   Mean   :130.3   Mean   :0.3211  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:203.0   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :1.0000   Max.   :285.0   Max.   :1.0000  
> library(LongCART)
Loading required package: nlme
Loading required package: rpart
Loading required package: survival
Loading required package: magic
Loading required package: abind
Loading required package: survminer
Loading required package: ggplot2
Loading required package: ggpubr

Attaching package: ‘survminer’

The following object is masked from ‘package:survival’:

    myeloma

> heart_failure_clinical$subjid<- 1:nrow(heart_failure_clinical)
> 
> # Run SurvCART() with time-to-event distribution: exponential, censoring distribution: None
> out<- SurvCART(data=heart_failure_clinical, patid = "id", censorvar="DEATH_EVENT", 
+                timevar="time", event.ind=0, gvars=c('anaemia', 'creatinine_phosphokinase', 'diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'gender', 'smoking', 'age'), tgvars=c(0,1,0,1,0,1,1,1,0,0,1), alpha=0.05, minsplit=299, minbucket=150, print=TRUE)
------------------------------------------ 
           ROOT NODE: NODE 1               
------------------------------------------ 
No. of subjects in root node: 299 

#of subjects at risk  :299
#of events            :203
Event (%)             :67.89
Summary (event time)    :106186215
Summary (censoring time):100NANA


Testing splitting variable:  anaemia
Stability Test for Categorical grouping variable 
Test.statistic= 0.302,    Adj. p-value= 0.583 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  creatinine_phosphokinase
Stability Test for Continuous grouping variable 
Test.statistic= 0.676,    Adj. p-value= 0.751 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  diabetes
Stability Test for Categorical grouping variable 
Test.statistic= 0.071,    Adj. p-value= 0.79 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  ejection_fraction
Stability Test for Continuous grouping variable 
Test.statistic= 1.052,    Adj. p-value= 0.218 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  high_blood_pressure
Stability Test for Categorical grouping variable 
Test.statistic= 0.787,    Adj. p-value= 0.375 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  platelets
Stability Test for Continuous grouping variable 
Test.statistic= 0.557,    Adj. p-value= 0.916 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  serum_creatinine
Stability Test for Continuous grouping variable 
Test.statistic= 1.15,    Adj. p-value= 0.142 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  serum_sodium
Stability Test for Continuous grouping variable 
Test.statistic= 0.883,    Adj. p-value= 0.417 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  gender
Stability Test for Categorical grouping variable 
Test.statistic= 0.03,    Adj. p-value= 0.861 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  smoking
Stability Test for Categorical grouping variable 
Test.statistic= 0.101,    Adj. p-value= 0.751 

Greater evidence of heterogeneity in time-to-event distribution 

Testing splitting variable:  age
Stability Test for Continuous grouping variable 
Test.statistic= 0.414,    Adj. p-value= 0.995 

Greater evidence of heterogeneity in time-to-event distribution 

***Selected Splitting variable:serum_creatinine***

DECISION: NO more splitting required 
  ID   n   D Q1.T median.T Q3.T Q1.C median.C Q3.C yval  loglik    AIC              var index
1  1 299 203  106      186  215  100       NA   NA  186 -1270.1 2542.3 serum_creatinine    NA
  p (Instability) improve Terminal
1           0.995      NA     TRUE
logLikelihood (root)=-1270.1   logLikelihood (tree)=-1270.1
AIC (root)=2542.3    AIC (tree)=2542.3
> par(mfrow=c(1,1))
> par(xpd = TRUE)
> plot(compress = TRUE)
Error in plot.default(compress = TRUE) : 
  argument "x" is missing, with no default
> 

:wave: The plot() function doesn't know what to plot because you haven't provided it with the object to plot, that's the "argument x is missing" error. Assuming you want to plot the output of SurvCART(), you'd need to pass that to plot(), so in your case plot(out).

I only know that the SurCART model serves merely as a root node, not as the single survival trees—just like the rpart or ctree models. Thank you.

> plot(out)
Error in plot.rpart(x = x, uniform = uniform, branch = branch, compress = compress,  : 
  fit is not a tree, just a root

You might want to post an issue to the maintainer of the package on github.

You will increase your chances of someone being able to help you out further if you turn your example into a reprex, a reproducible example. The reprex package is very handy for this and its website has more info on the why and how of reprexes.

Thank you very much.