This is my script:
library(xgboost)
library(tidyverse)
library(caret)
library(readxl)
library(data.table)
library(mlr)
data <- iris
righe_train <- sample(nrow(data),nrow(data)*0.8)
train <- data[righe_train,]
test <- data[-righe_train,]
setDT(train)
setDT(test)
labels <- train$Species
ts_label <- test$Species
new_tr <- model.matrix(~.+0,data = train[,-c("Species"),with=F])
new_ts <- model.matrix(~.+0,data = test[,-c("Species"),with=F])
#convert factor to numeric
labels <- as.numeric(labels)-1
ts_label <- as.numeric(ts_label)-1
#preparing matrix
dtrain <- xgb.DMatrix(data = new_tr,label = labels)
dtest <- xgb.DMatrix(data = new_ts,label=ts_label)
#default parameters
params <- list(booster = "gbtree",
objective = "binary:logistic",
eta=0.3,
gamma=0,
max_depth=6,
min_child_weight=1,
subsample=1,
colsample_bytree=1)
xgbcv <- xgb.cv( params = params,
data = dtrain,
nrounds = 100,
nfold = 5,
showsd = T,
stratified = T,
print_every_n = 10,
early_stopping_round = 20,
maximize = F)
##best iteration = 79
min(xgbcv$test.error.mean)
#first default - model training
xgb1 <- xgb.train (params = params, data = dtrain, nrounds = 79, watchlist = list(val=dtest,train=dtrain), print.every.n = 10, early.stop.round = 10, maximize = F , eval_metric = "error")
#model prediction
xgbpred <- predict (xgb1,dtest)
xgbpred <- ifelse (xgbpred > 0.5,1,0)
#confusion matrix
library(caret)
confusionMatrix (xgbpred, ts_label)
#Accuracy - 86.54%`
#view variable importance plot
mat <- xgb.importance (feature_names = colnames(new_tr),model = xgb1)
xgb.plot.importance (importance_matrix = mat[1:20])
but when I run the instruction xgbcv
I have this error:
Error in xgb.iter.update(fdbst,fdbst,fddtrain, iteration - 1, obj) :
[15:21:18] amalgamation/../src/objective/regression_obj.cu:103: label must be in [0,1] for logistic regression
why? how can I fix it?