Error in vector size in fviz_nbclust

HI Rcommunity,

Im try to make a cluster. First Im put the scale data but when I need verify the specific number of cluster appear this error text. Im not sure if is memory error. Im try to other PC but the error was the same :upside_down_face:

The file size is 28.300 KB

Error: no se puede ubicar un vector de tamaño 44.4 Gb

Any advice for use ff and bigmemory packages for make a solution. Im read about this but I dont have any idea for this.

code

library(readxl)
library(tidyverse)
library(factoextra)

datos <- scale(P_df1)

fviz_nbclust(x = datos, FUNcluster = kmeans, method = "wss", k.max = 15, 
             diss = get_dist(datos, method = "euclidean"), nstart = 50)

The error showed when Im run fviz_nbclust

P_df1<- structure(list(AÑO = c(2017, 2017, 2017, 2017, 2017, 2017, 2017, 
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 
2017, 2017, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 
2018, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019
), PERIODO = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2), PUNT_LECTURA_CRITICA = c(78, 67, 56, 64, 69, 57, 
69, 66, 65, 74, 65, 67, 71, 65, 63, 49, 63, 63, 71, 73, 67, 59, 
64, 60, 70, 60, 49, 50, 62, 46, 62, 58, 53, 54, 39, 52, 67, 52, 
41, 49, 55, 51, 58, 63, 56, 64, 52, 54, 39, 41, 48, 59, 45, 55, 
39, 63, 56, 60, 51, 68, 41, 55), PERCENTIL_LECTURA_CRITICA = c(98, 
78, 44, 69, 83, 47, 84, 77, 72, 95, 73, 78, 90, 74, 67, 25, 66, 
65, 89, 92, 92, 72, 85, 77, 96, 74, 38, 41, 81, 27, 81, 70, 52, 
57, 10, 50, 93, 49, 14, 38, 59, 44, 70, 84, 64, 85, 48, 54, 12, 
17, 36, 72, 27, 60, 13, 84, 65, 75, 47, 93, 16, 60), PUNT_GLOBAL = c(432, 
328, 297, 308, 331, 294, 354, 337, 314, 363, 337, 332, 333, 352, 
330, 275, 329, 315, 375, 357, 312, 281, 342, 312, 338, 267, 237, 
235, 288, 183, 273, 250, 249, 249, 176, 255, 343, 245, 175, 200, 
284, 213, 290, 275, 243, 256, 230, 225, 177, 180, 214, 315, 185, 
272, 178, 339, 265, 247, 253, 338, 165, 250), PERCENTIL_GLOBAL = c(100, 
72, 56, 61, 73, 54, 85, 77, 64, 89, 77, 74, 74, 84, 73, 44, 72, 
65, 94, 86, 87, 72, 96, 88, 95, 63, 42, 41, 76, 8, 67, 52, 51, 
51, 5, 56, 96, 48, 5, 17, 74, 28, 79, 71, 50, 59, 41, 37, 9, 
10, 29, 90, 12, 69, 9, 96, 65, 53, 57, 96, 4, 54), ESTU_INSE_INDIVIDUAL = c(4, 
3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 
3, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 2, 1, 1, 2, 2, 2, 
2, 2, 2, 2, 2, 1, 1, 2, 3, 1, 2, 1, 3, 2, 2, 2, 3, 1, 2), EDAD = c(18.5516769336071, 
16.455969581749, 18.466803559206, 18.2012320328542, 17.8309798270893, 
15.4393622161379, 18.4887063655031, 17.8556195965418, 16.1567080045096, 
17.8556195965418, 16.1676598486069, 17.3682997118156, 16.8419771863118, 
17.7324207492795, 17.1958213256484, 18.0828530259366, 17.9541786743516, 
17.6667146974063, 17.7899135446686, 16.7023574144487, 18.178674351585, 
16.477049444355, 16.5701401191818, 16.6556130209918, 17.2114390021296, 
17.3373897170672, 16.7678734408275, 16.8062062671129, 17.1840584119258, 
19.806258148631, 16.814420444174, 19.1129363449692, 17.4989351992699, 
16.7760876178887, 16.885609978704, 16.4797874053793, 18.1184438040346, 
16.5783540022548, 16.814420444174, 17.5701247337998, 17.0663218740493, 
18.0005764519383, 17.1648919987831, 17.014298752662, 15.8911257851506, 
16.9184666869486, 16.9376331000913, 15.9513609276856, 18.6338124572211, 
18.2387952154489, 16.9759659263766, 16.5537123530359, 18.1922467214296, 
17.5208396714329, 17.5728627928202, 17.9047413171927, 17.3483419531488, 
20.0307692307692, 18.40308401787, 16.2908680947012, 17.1402494675996, 
17.5454822026164)), row.names = c(NA, -62L), class = c("tbl_df", 
"tbl", "data.frame"))
sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19043)

Matrix products: default

locale:
[1] LC_COLLATE=Spanish_Colombia.1252 
[2] LC_CTYPE=Spanish_Colombia.1252   
[3] LC_MONETARY=Spanish_Colombia.1252
[4] LC_NUMERIC=C                     
[5] LC_TIME=Spanish_Colombia.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets 
[6] methods   base     

other attached packages:
 [1] factoextra_1.0.7 forcats_0.5.1    stringr_1.4.0   
 [4] dplyr_1.0.5      purrr_0.3.4      readr_1.4.0     
 [7] tidyr_1.1.3      tibble_3.1.1     ggplot2_3.3.5   
[10] tidyverse_1.3.1  readxl_1.3.1    

loaded via a namespace (and not attached):
 [1] ggrepel_0.9.1        Rcpp_1.0.7          
 [3] lubridate_1.7.10     prettyunits_1.1.1   
 [5] ps_1.6.0             assertthat_0.2.1    
 [7] digest_0.6.27        utf8_1.2.1          
 [9] V8_3.4.2             R6_2.5.0            
[11] cellranger_1.1.0     backports_1.2.1     
[13] reprex_2.0.0         stats4_4.0.5        
[15] evaluate_0.14        httr_1.4.2          
[17] pillar_1.6.3         rlang_0.4.10        
[19] curl_4.3.1           rstudioapi_0.13     
[21] callr_3.7.0          rmarkdown_2.8       
[23] loo_2.4.1            munsell_0.5.0       
[25] broom_0.7.6          compiler_4.0.5      
[27] modelr_0.1.8         xfun_0.23           
[29] rstan_2.21.2         pkgconfig_2.0.3     
[31] pkgbuild_1.2.0       htmltools_0.5.1.1   
[33] tidyselect_1.1.1     gridExtra_2.3       
[35] codetools_0.2-18     matrixStats_0.58.0  
[37] fansi_0.4.2          crayon_1.4.1        
[39] dbplyr_2.1.1         withr_2.4.3         
[41] grid_4.0.5           jsonlite_1.7.2      
[43] gtable_0.3.0         lifecycle_1.0.0     
[45] DBI_1.1.1            magrittr_2.0.1      
[47] StanHeaders_2.21.0-7 scales_1.1.1        
[49] RcppParallel_5.1.4   cli_3.0.1           
[51] stringi_1.6.1        fs_1.5.0            
[53] xml2_1.3.2           ellipsis_0.3.2      
[55] generics_0.1.0       vctrs_0.3.8         
[57] tools_4.0.5          glue_1.4.1          
[59] hms_1.0.0            parallel_4.0.5      
[61] processx_3.5.2       yaml_2.2.1          
[63] inline_0.3.19        colorspace_2.0-1    
[65] rvest_1.0.0          knitr_1.33          
[67] haven_2.4.1   
> memory.limit()
[1] 3545

Thanks!

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.