#### CHAPTER 2 MULTIVARIATE GARCH MODEL ####
###Load required packages for running Multivariate model
I'm trying to estimate the DCC model but I have this problem can someone help me please?
install.packages(c("quantmod","rugarch","rmgarch")) # only needed in case you have not yet installed these packages non mi ricordo per sicurezza installa tuttooooooo
library(quantmod)
library(rugarch)
library(rmgarch)
install.packages("mgarchBEKK")
library(mgarchBEKK)
# important DCC ESTIMATION
install.packages("ccgrach")
library(ccgarch)
setDefaults(getSymbols,src='yahoo')
startDate = as.Date("2006-01-04") #Specify period of time we are interested in
endDate = as.Date("2022-12-23")
getSymbols("^GDAXI", from = startDate, to = endDate)
getSymbols("^SSMI", from = startDate, to = endDate)
getSymbols("^FCHI", from = startDate, to = endDate)
getSymbols("^FTAS", from = startDate, to = endDate)
GDAXI -> TS
names(TS) <- c("Open","High","Low","Close","Volume","Adjusted")
gdaxi<-TS$Adjusted
length(gdaxi)
SSMI -> TS1
names(TS1) <- c("Open","High","Low","Close","Volume","Adjusted")
ssmi<-TS1$Adjusted
length(gdaxi)
FCHI -> TS2
names(TS2) <- c("Open","High","Low","Close","Volume","Adjusted")
fchi<-TS2$Adjusted
length(fchi)
FTAS -> TS3
names(TS3) <- c("Open","High","Low","Close","Volume","Adjusted")
ftas<-TS3$Adjusted
length(ftas)
data<-cbind(log(gdaxi),log(fchi),log(ftas), log(ssmi))
colnames(data)=c("GDAXI", "FCHI","FTAS", "SSMI")
View(data)
sum(is.na(data))
data<-na.omit(data)
plot(data)
data<-cbind(diff(log(gdaxi)),diff(log(fchi)),diff(log(ftas)),diff(log(ssmi)))
colnames(data)=c("GDAXI", "FCHI","FTAS", "SSMI")
View(data)
sum(is.na(data))
data<-na.omit(data)
sum(is.na(data))
####DCC MODEL###
##### Specify DCC MODEL ###
# univariate normal GARCH(1,1) for each series
garch11.spec = ugarchspec(mean.model = list(armaOrder = c(0,0)),
variance.model = list(garchOrder = c(1,1),
model = "sGARCH"),
distribution.model = "norm")
## dcc specification - GARCH(1,1) for conditional correlations
dcc.garch11.spec = dccspec(uspec = multispec( replicate(3,garch11.spec) ),
dccOrder = c(1,1),
distribution = "mvnorm")
dcc.garch11.spec
###### ESTIMATE DCC MODEL ###
data1<-data.frame(data)
data<-as.data.frame(data)### NOT THE SAME lag
str(data)
nrow(data)
# 4083
NROW(na.omit(data))
dim(data)
nrow(GDAXI)#4234
nrow(FCHI)#4267
nrow(FTAS)#4215
nrow(SSMI)#4202
dcc.fit= dccfit(dcc.garch11.spec, data=data)
dcc.fit
class(dcc.fit)
slotNames(dcc.fit)
names(dcc.fit@mfit)
###### Estimate DCC Model######
names(dcc.fit@model)
dcc.fit
plot(dcc.fit)
#Make a plot selection (or 0 to exit):
#Conditional Mean (vs Realized Returns)
#Conditional Sig ( mavs Realized Absolute Returns)
# Conditional Covariance
#Conditional Correlation
#EW Portfolio Plot with conditional density VaR limi
#####DCC Forecasts####
# 100-step ahead forecasts of conditional covariances
# and conditional correlations
dcc.fcst = dccforecast(dcc.fit, n.ahead =100)
class(dcc.fcst)
slotNames(dcc.fcst)
class(dcc.fcst@mforecast)
names(dcc.fcst@mforecast)
dcc.fcst
plot(dcc.fcst)
##BEKK MODEL##