Efficient way to read excel date/datetime columns.

I have loaded dataset with 3.3M records using datatable. There are few datetime/date columns in my data.
1. Time taken for loading data.
user  system elapsed 
   3.99    0.17    3.44
2.Time taken for converting date columns.
user  system elapsed 
  29.78    0.04   30.13
#>reading data

getwd()
library(data.table)
library(esquisse)
library(readxl)
library(purrr)
library(fasttime)
library(lubridate)

ColnamesTransactionData_Train <- (read_xlsx("data\\train_data\\Updated_Column_Description.xlsx", range = "Transaction_data!A1:B9"
                                            , col_names = FALSE,
                                            col_types = NULL, na = "", trim_ws = TRUE, skip = 0, n_max = Inf,
                                            guess_max = min(14)))


ColnamesTransactionData_Train <- ColnamesTransactionData_Train$X__2
#####======Transactional Data Analysis=====#####

xxx = c("character","character","Date","character","character","Date","Date","character","numeric")

system.time(TransactionData_Train <- fread("data\\train_data\\TransactionData_Train.csv", col.names = ColnamesTransactionData_Train, colClasses = xxx))

str(TransactionData_Train)
#still the column are not converted to date type.. Any help ?

system.time(TransactionData_Train[, DateOfTransaction := as.Date(substring(TransactionData_Train$`The date of transaction`, 0, nchar(TransactionData_Train$`The date of transaction`)-9L),"%d%b%Y")])

````Preformatted text`

How about using just as.Date() ?
Could you attach a snapshot of how the date column looks like?

Thanks!
Heramb

1 Like

Any other way to do it while reading the file itself ?
I have tried this one already.

Try this out : One downside will be; to convert .xlsx to .csv

library(readr)
raw_data <- read_csv("raw_data.csv", 
    col_types = cols(DATIME = col_datetime(format = "%d-%m-%Y %H:%M")))

format :: will be the one that you have in your column string

Thanks!
Heramb