You are not being very specific about the output you are looking for, Is this what you want?
library(tidyverse)
# Sample data in a copy/paste friendly format, replace this with your own data frame
sample_df <- data.frame(
check.names = FALSE,
`Item 1 Score` = c(870L, 630L, 60L, 870L, 350L, 430L, 880L, 670L, 310L, 280L),
`Item 2 Score` = c(730L, 710L, 900L, 610L, 80L, 710L, 540L, 600L, 810L, 350L),
`Item 3 score` = c(40L, 600L, 540L, 730L, 610L, 690L, 970L, 420L, 60L, 40L),
`Item 4 Score` = c(270L, 560L, 440L, 200L, 50L, 620L, 340L, 700L, 600L, 680L),
`Item 5 Score` = c(800L, 480L, 350L, 430L, 560L, 250L, 640L, 250L, 410L, 770L)
)
# Relevant code
sample_df %>%
pivot_longer(cols = everything(), names_to = "Item", values_to = "Mean_Score") %>%
mutate(Item = str_remove(Item, "\\s[Ss]core$")) %>% # This is just to clean the names
group_by(Item) %>%
summarise(Mean_Score = mean(Mean_Score))
#> # A tibble: 5 × 2
#> Item Mean_Score
#> <chr> <dbl>
#> 1 Item 1 535
#> 2 Item 2 604
#> 3 Item 3 470
#> 4 Item 4 446
#> 5 Item 5 494
Created on 2022-03-09 by the reprex package (v2.0.1)
Note: Please notice the way I'm sharing the example with you, that would be a proper reproducible example, please read the guide on the link I gave you before and next time try to provide one.