Hi, I am new to R. I am learning to code to perform meta-analysis. I am reading Doing Meta-Analysis in R. I encountered this error. Is anyone able to help with this?
'''
Make sure meta and dmetar are already loaded
library(meta)
library(dmetar)
Extensive documentation for the dmetar package can be found at:
Welcome! | Doing Meta-Analysis in R
library(meta)Load dataset from dmetar (or download and open manually)
data(SuicidePrevention)
Use metcont to pool results.
m.cont <- metacont(n.e = n.e,
-
mean.e = mean.e,
-
sd.e = sd.e,
-
n.c = n.c,
-
mean.c = mean.c,
-
sd.c = sd.c,
-
studlab = author,
-
data = SuicidePrevention,
-
sm = "SMD",
-
method.smd = "Hedges",
-
fixed = FALSE,
-
random = TRUE,
-
method.tau = "REML",
-
hakn = TRUE,
-
title = "Suicide Prevention")
summary(m.cont)
Review: Suicide Prevention
SMD 95%-CI %W(random)
Berry et al. -0.1428 [-0.4315; 0.1459] 15.6
DeVries et al. -0.6077 [-0.9402; -0.2752] 12.3
Fleming et al. -0.1112 [-0.6177; 0.3953] 5.7
Hunt & Burke -0.1270 [-0.4725; 0.2185] 11.5
McCarthy et al. -0.3925 [-0.7884; 0.0034] 9.0
Meijer et al. -0.2676 [-0.5331; -0.0021] 17.9
Rivera et al. 0.0124 [-0.3454; 0.3703] 10.8
Watkins et al. -0.2448 [-0.6848; 0.1952] 7.4
Zaytsev et al. -0.1265 [-0.5062; 0.2533] 9.7
Number of studies: k = 9
Number of observations: o = 1147 (o.e = 571, o.c = 576)
SMD 95%-CI t p-value
Random effects model -0.2304 [-0.3734; -0.0874] -3.71 0.0059
Quantifying heterogeneity:
tau^2 = 0.0044 [0.0000; 0.0924]; tau = 0.0661 [0.0000; 0.3040]
I^2 = 7.4% [0.0%; 67.4%]; H = 1.04 [1.00; 1.75]
Test of heterogeneity:
Q d.f. p-value
8.64 8 0.3738
Details on meta-analytical method:
- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Hartung-Knapp adjustment for random effects model (df = 8)
- Hedges' g (bias corrected standardised mean difference; using exact formulae)
forest.meta(m.gen,
-
sortvar = TE,
-
prediction = TRUE,
-
print.tau2 = FALSE,
-
leftlabs = c("Author", "g", "SE"))
Error in forest.meta(m.gen, sortvar = TE, prediction = TRUE, print.tau2 = FALSE, :
could not find function "forest.meta"
'''