creating a custom recipe `step_famd` for Factor analysis of mixed data

I am getting an error with prep, I tried to follow documentation and step_pca as an example.

#' Factor Analysis of Mixed Data (FAMD) Step
#' @export
step_famd <- function(recipe, 
                      ..., 
                      role = "predictor", 
                      trained = FALSE, 
                      num_comp = 2,
                      threshold = NA,
                      options = list(),
                      res = NULL,
                      columns = NULL,
                      prefix = "PC",
                      keep_original_cols = FALSE,
                      skip = FALSE, 
                      id = rand_id("famd")) {
  #terms <- ellipse_check(...)
  
  add_step(
    recipe, 
    step_famd_new(
      terms = enquos(...),
      trained = trained,
      role = role,
      num_comp = num_comp,
      threshold = threshold,
      options = options,
      res = res,
      columns = columns,
      prefix = prefix,
      keep_original_cols = keep_original_cols,
      skip = skip,
      id = id,
      case_weights = NULL
      )
    )
}

step_famd_new <- function(terms, role, trained, num_comp, threshold, options, res, columns,
                          prefix, keep_original_cols, skip, id, case_weights) {
  step(
    subclass = "famd",
    terms = terms,
    role = role,
    trained = trained,
    num_comp = num_comp,
    threshold = threshold,
    options = options,
    res = res,
    columns = columns,
    prefix = prefix,
    keep_original_cols = keep_original_cols,
    skip = skip,
    id = id,
    case_weights = case_weights
  )
}

#' @export
prep.step_famd <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_number_decimal(x$threshold, arg = "threshold", min = 0, max = 1,
                       allow_na = TRUE)
  check_string(x$prefix, arg = "prefix")
  check_number_whole(x$num_comp, arg = "num_comp", min = 0)
  
  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }
  
  if (x$num_comp > 0 && length(col_names) > 0) {
    if (is.null(wts)) {
      famd_call <-
        expr(FactoMineR::FAMD(
          graph = FALSE
        ))
      if (length(x$options) > 0) {
        famd_call <- rlang::call_modify(famd_call, !!!x$options)
      }
      
      famd_call$x <- expr(training[, col_names, drop = FALSE])
      famd_obj <- eval(famd_call)
      ## decide on removing prc elements that aren't used in new projections
      ## e.g. `sdev` etc.
    } else {
      famd_call <-
        expr(FactoMineR::FAMD(
          graph = FALSE,
          row.w = wts
        ))
      if (length(x$options) > 0) {
        famd_call <- rlang::call_modify(famd_call, !!!x$options)
      }
      
      famd_call$x <- expr(training[, col_names, drop = FALSE])
      famd_obj <- eval(famd_call)
    }
  
    x$num_comp <- min(x$num_comp, length(col_names))
    
    if (!is.na(x$threshold)) {
      num_comp <-
        which.max(famd_obj$eig[,"cumulative percentage of variance"]/100 >= x$threshold)
      if (length(num_comp) == 0) {
        num_comp <- length(famd_obj$eig[,'eigenvalue'])
      }
      x$num_comp <- num_comp
    }
    
  } else {
    famd_obj <- NULL
  }
  
  step_famd_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    num_comp = x$num_comp,
    threshold = x$threshold,
    options = x$options,
    res = famd_obj,
    columns = col_names,
    prefix = x$prefix,
    keep_original_cols = get_keep_original_cols(x),
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
bake.step_famd <- function(object, new_data, ...) {
  check_new_data(object$columns, object, new_data)
  
  if (is.null(object$columns)) {
    object$columns <- stats::setNames(nm = rownames(object$res$var$coord))
  }
  
  if (length(object$columns) == 0 || all(is.na(object$res$var$coord))) {
    return(new_data)
  }
  
  comps <- as.data.frame(FactoMineR::predict.FAMD(object$res, newdata = new_data)$coord)
  comps <- check_name(comps, new_data, object)
  new_data <- vec_cbind(new_data, as_tibble(comps))
  new_data <- remove_original_cols(new_data, object, pca_vars)
  new_data
}

#' @export
print.step_famd <-
  function(x, width = max(20, options()$width - 29), ...) {
    if (x$trained) {
      if (is.null(x$columns)) {
        x$columns <- stats::setNames(nm = rownames(x$res$var$coord))
      }
      
      if (length(x$columns) == 0 || all(is.na(x$res$var$coord))) {
        title <- "No FAMD components were extracted from "
        columns <- names(x$columns)
      } else {
        title <- glue("FMAD extraction with ")
        columns <- rownames(x$res$var$coord)
      }
    } else {
      title <- "FAMD extraction with "
    }
    print_step(columns, x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

famd_coefs <- function(x) {
  if (x$num_comp > 0 && length(x$columns) > 0) {
    rot <- as.data.frame(x$res$var$contrib)
    npc <- ncol(rot)
    res <- utils::stack(rot)
    colnames(res) <- c("value", "component")
    res$component <- as.character(res$component)
    res$terms <- rep(unname(x$columns), npc)
    res <- as_tibble(res)[, c("terms", "value", "component")]
  } else {
    res <- tibble::tibble(
      terms = unname(x$columns), value = rlang::na_dbl,
      component = rlang::na_chr
    )
  }
  res
}

famd_cos2 <- function(x) {
  if (x$num_comp > 0 && length(x$columns) > 0) {
    rot <- as.data.frame(x$res$var$cos2)
    npc <- ncol(rot)
    res <- utils::stack(rot)
    colnames(res) <- c("value", "component")
    res$component <- as.character(res$component)
    res$terms <- rep(unname(x$columns), npc)
    res <- as_tibble(res)[, c("terms", "value", "component")]
  } else {
    res <- tibble::tibble(
      terms = unname(x$columns), value = rlang::na_dbl,
      component = rlang::na_chr
    )
  }
  res
}

famd_variances <- function(x) {
  if (x$num_comp > 0 && length(x$columns) > 0) {
    variances <- x$res$eig[,'percentage of variance']
    
    y <- c(
      variances,
      cumsum(variances)
    )
    x <-
      rep(
        c(
          "variance",
          "cumulative variance"
        ),
        each = p
      )
    
    res <- tibble::tibble(
      terms = x,
      value = y,
      component = rep(seq_len(p), 4)
    )
  } else {
    res <- tibble::tibble(
      terms = unname(x$columns),
      value = rep(rlang::na_dbl, length(x$columns)),
      component = rep(rlang::na_chr, length(x$columns))
    )
  }
  res
}

#' @export
tidy.step_famd <- function(x, type = "coef", ...) {
  if (!is_trained(x)) {
    term_names <- sel2char(x$terms)
    res <- tibble(
      terms = term_names,
      value = na_dbl,
      component = na_chr
    )
  } else {
    type <- rlang::arg_match(
      type,
      c("coef", "variance", 'cos2'),
      error_call = rlang::caller_env()
    )
    if (type == "coef") {
      res <- famd_coefs(x)
    } else if (type == "variance") {
      res <- famd_variances(x)
    } else {
      res <- famd_cos2(x)
    }
  }
  res$id <- x$id
  res
}

#' @export
tunable.step_famd <- function(x, ...) {
  tibble::tibble(
    name = c("num_comp", "threshold"),
    call_info = list(
      list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
      list(pkg = "dials", fun = "threshold")
    ),
    source = "recipe",
    component = "step_famd",
    component_id = x$id
  )
}