Create a column of `seq_range` output in nested dataframe?

I would like to fit an lm to a couple variables in my data set and then use the lm to make predictions. I nest the variables, and then using purrr map each variable to lm. Now, I would like to create some new data that I can then pass into the predict method, but I keep running into an error. See my reprex below:


library(tidyverse)
#> ── Attaching packages ───────────────────────────── tidyverse 1.2.1 ──
#> ✔ ggplot2 2.2.1.9000     ✔ purrr   0.2.4     
#> ✔ tibble  1.4.2          ✔ dplyr   0.7.4     
#> ✔ tidyr   0.8.0          ✔ stringr 1.3.0     
#> ✔ readr   1.1.1          ✔ forcats 0.2.0
#> ── Conflicts ──────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
library(modelr)
c.data =tibble::tribble(
  ~Age, ~Weight,   ~Concentration, ~Creatinine,  ~CockcroftGault,
  85,      85, 47.3371693155954,          84, 68.3719433719434,
  73,      82, 49.6784937598018,          64, 105.459152334152,
  62,   149.2, 45.8995448818044,         137, 104.356247421941,
  64,     120,           35.622,          99, 113.171022261931,
  58,    89.7, 88.6297240847784,         160, 56.4757371007371,
  80,   134.4,  49.308741975603,         108, 91.7280917280917
)
c.data %>% 
  gather(variable, value, -Concentration) %>% 
  group_by(variable) %>% 
  nest() %>% 
  mutate(
    model = map(data, ~lm(log(Concentration) ~ ., data = .x)),
    support = map2(data, variable, ~ data_grid(.x, .y = seq_range(.y,20) ))
  )
#> Warning in seq.default(rng[1], rng[2], length.out = n): NAs introduced by
#> coercion
#> Error in mutate_impl(.data, dots): Evaluation error: 'from' must be a finite number.

Mapping to lm seems fine, I just run into a problem with the data_grid bit. variable is a character column, so I think there is a problem in seq_range but I am not sure.

How can I create a nested column in my dataframe which contains the output of seq_range for each of my nested variables?