Just for fun, here is the answer received from with the OP as a prompt from ChatGPT Mar 23 Version
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(tidyr)
covid.incidence <- tibble::tribble(
~dates, ~I, ~dates2, ~I_2,
"24/03/2023", 4467L, "18/03/2023", 638L,
"31/03/2023", 5225L, "19/03/2023", 638L,
NA, NA, "20/03/2023", 638L,
NA, NA, "21/03/2023", 638L,
NA, NA, "22/03/2023", 638L,
NA, NA, "23/03/2023", 638L,
NA, NA, "24/03/2023", 638L,
NA, NA, "25/03/2023", 746L,
NA, NA, "26/03/2023", 746L,
NA, NA, "27/03/2023", 746L,
NA, NA, "28/03/2023", 746L,
NA, NA, "29/03/2023", 746L,
NA, NA, "30/03/2023", 746L,
NA, NA, "31/03/2023", 746L
)
# Convert dates to date format
covid.incidence$dates <- as.Date(covid.incidence$dates, "%d/%m/%Y")
# Create a new column for the week start date
covid.incidence <- covid.incidence %>%
mutate(week_start = as.Date(dates - weekdays(dates) + 1))
#> Error in `mutate()`:
#> ℹ In argument: `week_start = as.Date(dates - weekdays(dates) + 1)`.
#> Caused by error in `unclass(as.Date(e1)) - e2`:
#> ! non-numeric argument to binary operator
#> Backtrace:
#> ▆
#> 1. ├─covid.incidence %>% ...
#> 2. ├─dplyr::mutate(...)
#> 3. ├─dplyr:::mutate.data.frame(., week_start = as.Date(dates - weekdays(dates) + 1))
#> 4. │ └─dplyr:::mutate_cols(.data, dplyr_quosures(...), by)
#> 5. │ ├─base::withCallingHandlers(...)
#> 6. │ └─dplyr:::mutate_col(dots[[i]], data, mask, new_columns)
#> 7. │ └─mask$eval_all_mutate(quo)
#> 8. │ └─dplyr (local) eval()
#> 9. ├─base::as.Date(dates - weekdays(dates) + 1)
#> 10. ├─base::`-.Date`(dates, weekdays(dates))
#> 11. │ └─base::.Date(unclass(as.Date(e1)) - e2)
#> 12. └─base::.handleSimpleError(...)
#> 13. └─dplyr (local) h(simpleError(msg, call))
#> 14. └─rlang::abort(message, class = error_class, parent = parent, call = error_call)
# Group by week start date and calculate the average daily incidence
daily.incidence <- covid.incidence %>%
group_by(week_start) %>%
summarize(daily_incidence = sum(I, na.rm = TRUE)/7) %>%
ungroup()
#> Error in `group_by()`:
#> ! Must group by variables found in `.data`.
#> ✖ Column `week_start` is not found.
#> Backtrace:
#> ▆
#> 1. ├─... %>% ungroup()
#> 2. ├─dplyr::ungroup(.)
#> 3. ├─dplyr::summarize(., daily_incidence = sum(I, na.rm = TRUE)/7)
#> 4. ├─dplyr::group_by(., week_start)
#> 5. └─dplyr:::group_by.data.frame(., week_start)
#> 6. └─dplyr::group_by_prepare(.data, ..., .add = .add, error_call = current_env())
#> 7. └─rlang::abort(bullets, call = error_call)
# Create a sequence of dates from the start of the first week to the end of the last week
date_seq <- seq(min(daily.incidence$week_start), max(daily.incidence$week_start) + 6, by = "day")
#> Error in seq(min(daily.incidence$week_start), max(daily.incidence$week_start) + : object 'daily.incidence' not found
# Create a new tibble with the daily incidence and corresponding dates
daily_covid <- tibble(dates2 = date_seq,
I_2 = rep(daily.incidence$daily_incidence, each = 7))
#> Error in eval_tidy(xs[[j]], mask): object 'date_seq' not found
# Format the dates
daily_covid$dates2 <- format(daily_covid$dates2, "%d/%m/%Y")
#> Error in format(daily_covid$dates2, "%d/%m/%Y"): object 'daily_covid' not found
# Join the daily incidence tibble with the original tibble to get the desired outcome
covid.incidence <- covid.incidence %>%
select(-I, -dates2) %>%
left_join(daily_covid, by = "dates") %>%
select(dates, I_2, dates2)
#> Error in is.data.frame(y): object 'daily_covid' not found