I want to count total no. of values(Non-NA) for each column and want to identify the column with maximum no. of values (Non-NA) .
Kindly suggest how to proceed.
I want to count total no. of values(Non-NA) for each column and want to identify the column with maximum no. of values (Non-NA) .
Kindly suggest how to proceed.
Hi @banoj12,
Try something like this:
library(mice) # loaded for data with missing values (nhanes2)
library(dplyr)
nhanes2 %>%
as_tibble() %>%
head()
#> # A tibble: 6 x 4
#> age bmi hyp chl
#> <fct> <dbl> <fct> <dbl>
#> 1 20-39 NA <NA> NA
#> 2 40-59 22.7 no 187
#> 3 20-39 NA no 187
#> 4 60-99 NA <NA> NA
#> 5 20-39 20.4 no 113
#> 6 60-99 NA <NA> 184
count_nonmiss <-
nhanes2 %>%
summarise_all(~sum(!is.na(.)))
count_nonmiss
#> age bmi hyp chl
#> 1 25 16 17 15
count_nonmiss %>%
pivot_longer(everything()) %>%
arrange(desc(value)) %>%
slice(1)
#> # A tibble: 1 x 2
#> name value
#> <chr> <int>
#> 1 age 25
Created on 2020-02-07 by the reprex package (v0.3.0)
This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.