structure(list(sender = c("EGg6", "EGb4", "EGb13", "EGr1", "EGg1",
"EGg4", "EGg4", "EGr13", "EGg1", "EGr14", "EGg6", "EGg1", "EGg13",
"EGg14", "EGr4", "EGb4", "EGg14", "EGb1", "EGg13", "EGr13", "EGg4",
"EGb1", "EGb6", "EGg4", "EGg13", "EGr14", "EGr1", "EGr14", "EGr14",
"EGg4", "EGg14", "EGr6", "EGb1", "EGg6", "EGr6", "EGr4", "EGb14",
"EGr6", "EGg14", "EGr14", "EGb14", "EGr4", "EGb4", "EGg14", "EGb4",
"EGb14", "EGb6", "EGg1", "EGr13", "EGr4", "EGg13", "EGg13", "EGr1",
"EGb6", "EGb13", "EGb13", "EGb1", "EGr13", "EGb1", "EGb6", "EGg6",
"EGb13", "EGr1", "EGb14", "EGr4", "EGg1", "EGb4", "EGr6", "EGb13",
"EGb14", "EGb6", "EGr6", "EGr1", "EGg6", "EGr13", "EGg14", "EGr4",
"EGr6", "EGr13", "EGr1", "EGb4", "EGr13", "EGr4", "EGg4", "EGb1",
"EGb4", "EGg6", "EGr14", "EGr4", "EGr6", "EGg14", "EGr6", "EGg13",
"EGr1", "EGb13", "EGg4", "EGr14", "EGg1", "EGr14", "EGg6", "EGg13",
"EGb14", "EGg14", "EGb6", "EGb13", "EGg14", "EGb1", "EGr14",
"EGr4", "EGb6", "EGb6", "EGg4", "EGb4", "EGb13", "EGr13", "EGg6",
"EGg6", "EGr1", "EGb4", "EGr1", "EGb14", "EGg6", "EGr13", "EGg1",
"EGb4", "EGr14", "EGg4", "EGg14", "EGg1", "EGg1", "EGg13", "EGb14",
"EGg1", "EGb6", "EGg13", "EGb13", "EGg13", "EGr6", "EGb6", "EGg4",
"EGb1", "EGb14", "EGr4", "EGb14", "EGb13", "EGr6", "EGr13", "EGb1",
"EGb1", "EGr1", "EGr13", "EGb14", "EGg14", "EGb6", "EGg6", "EGr13",
"EGb1", "EGg6", "EGb13", "EGr4", "EGb14", "EGr14", "EGb1", "EGr1",
"EGg1", "EGr14", "EGr1", "EGb6", "EGb13", "EGb13", "EGr6", "EGr4",
"EGb4", "EGr14", "EGr13", "EGr6", "EGg4", "EGb1", "EGr14", "EGr6",
"EGg4", "EGg1", "EGb6", "EGg14", "EGr4", "EGb4", "EGr6", "EGr13",
"EGr6", "EGg4", "EGg4", "EGb13", "EGb14", "EGg6", "EGg13", "EGg14",
"EGg13", "EGb6", "EGb14", "EGb1", "EGg13", "EGg6", "EGr1", "EGg1",
"EGg13", "EGg1", "EGg1", "EGb4", "EGr14", "EGg14", "EGr13", "EGr4",
"EGb14", "EGg14", "EGr1", "EGg6", "EGg4", "EGb13", "EGb4", "EGg13",
"EGb4", "EGr1", "EGb1", "EGb6", "EGr4", "EGg13", "EGb1", "EGb6",
"EGb4", "EGr4", "EGr14", "EGg1", "EGb14", "EGr13", "EGr4", "EGb6",
"EGb6", "EGg13", "EGr13", "EGg6", "EGg14", "EGb1", "EGb4", "EGr1",
"EGg4", "EGg14", "EGb14", "EGb14", "EGg13", "EGg4", "EGg14",
"EGg13", "EGr1", "EGr14", "EGb4", "EGg1", "EGg1", "EGg14", "EGb1",
"EGr6", "EGb13", "EGr4", "EGb1", "EGg13", "EGg14", "EGg1", "EGr14",
"EGb13", "EGr4", "EGb4", "EGr1", "EGg6", "EGg6", "EGg4", "EGg1",
"EGr13", "EGb13", "EGr6", "EGb1", "EGb14", "EGr14", "EGr1", "EGr14",
"EGb4", "EGb14", "EGr6", "EGr1", "EGb13", "EGg6", "EGb13", "EGg4",
"EGr6", "EGg4", "EGg6", "EGr4", "EGr6", "EGb6", "EGr13", "EGr13",
"EGb6", "EGg13", "EGr4", "EGb4", "EGb1", "EGb13", "EGb6", "EGb6",
"EGg6", "EGg14", "EGr14", "EGb4", "EGg13", "EGr4", "EGg13", "EGg14",
"EGb6", "EGb6", "EGr14", "EGb13", "EGg4", "EGb14", "EGg1", "EGb14",
"EGr1", "EGb1", "EGb13", "EGb4", "EGg1", "EGg6", "EGr4", "EGb1",
"EGb14", "EGr13", "EGg4", "EGb4", "EGr6", "EGg4", "EGr6", "EGb1",
"EGr13", "EGg13", "EGr1", "EGr13", "EGg6", "EGb4", "EGg13", "EGr1",
"EGr4", "EGr14", "EGr4", "EGb14", "EGg1", "EGr1", "EGr6", "EGg6",
"EGg6", "EGr14", "EGb1", "EGg1", "EGr13", "EGr6", "EGg14", "EGr6",
"EGg4", "EGg14", "EGr13", "EGg4", "EGb13", "EGg1", "EGg14", "EGr1",
"EGb14", "EGb6", "EGb13", "EGr14", "EGb4", "EGr14", "EGb13",
"EGb4", "EGb13", "EGg6", "EGg4", "EGr4", "EGg1", "EGg4", "EGb4",
"EGr14", "EGg14", "EGg4", "EGg14", "EGg4", "EGg13", "EGb1", "EGg13",
"EGr13", "EGg14", "EGr4", "EGg1", "EGg1", "EGb4", "EGr1", "EGb13",
"EGr13", "EGg6", "EGg14", "EGg13", "EGr6", "EGb1", "EGg13", "EGr14",
"EGr6", "EGb1", "EGb14", "EGb6", "EGb1", "EGr1", "EGr1", "EGb14",
"EGg4", "EGb4", "EGb1", "EGg1", "EGr4", "EGr4", "EGg14", "EGr13",
"EGb13", "EGg6", "EGb14", "EGr6", "EGb14", "EGr14", "EGb6", "EGr1",
"EGr14", "EGb6", "EGr6", "EGg6", "EGg6", "EGr1", "EGb6", "EGg13",
"EGr13", "EGr4", "EGr6", "EGb6", "EGg1", "EGb14", "EGb13", "EGr13",
"EGr1", "EGg4", "EGb13", "EGg14", "EGr14", "EGg6", "EGb1", "EGb14",
"EGg1", "EGg13", "EGg1", "EGb6", "EGg4", "EGr14", "EGg4", "EGb6",
"EGr4", "EGb13", "EGb13", "EGg4", "EGb4", "EGr1", "EGb14", "EGb6",
"EGb13", "EGb1", "EGg1", "EGr14", "EGg4", "EGb4", "EGg6", "EGb14",
"EGg14", "EGr1", "EGb14", "EGg14", "EGr1", "EGb1", "EGb14", "EGr6",
"EGr13", "EGr1", "EGr14", "EGg13", "EGg1", "EGg13", "EGg1", "EGr13",
"EGr6", "EGr6", "EGb1", "EGb13", "EGb1", "EGg6", "EGb6", "EGg6",
"EGb4", "EGr6", "EGr4", "EGb4", "EGr4", "EGr4", "EGb4", "EGr14",
"EGb6", "EGr4", "EGg13", "EGg6", "EGg13", "EGr6", "EGg14", "EGr13",
"EGg14", "EGr13", "EGr13", "EGb13", "EGg6", "EGg1", "EGg13",
"EGr1", "EGg4", "EGr1", "EGr6", "EGb1", "EGr14", "EGg1", "EGr14",
"EGb6", "EGr1", "EGb14", "EGb1", "EGr6", "EGg6", "EGg4", "EGb1",
"EGb13", "EGb14", "EGg14", "EGg14", "EGr13", "EGr14", "EGr6",
"EGr4", "EGg4", "EGb14", "EGr4", "EGg13", "EGb4", "EGg13", "EGg13",
"EGg14", "EGr13", "EGb1", "EGb13", "EGr4", "EGg6", "EGr6", "EGb6",
"EGr13", "EGg1", "EGb4", "EGr14", "EGg14", "EGr6", "EGg1", "EGb6",
"EGb13", "EGg4", "EGb4", "EGr4", "EGb14", "EGb4", "EGr14", "EGg13",
"EGb13", "EGb4", "EGb6", "EGr4", "EGb14", "EGr13", "EGb1", "EGr1",
"EGr13", "EGg6", "EGg4", "EGr1", "EGg14", "EGg6", "EGg1", "EGb6",
"EGg14", "EGb14", "EGg6", "EGg1", "EGb1", "EGg1", "EGb4", "EGr14",
"EGr6", "EGr14", "EGb1", "EGr1", "EGb14", "EGb14", "EGg4", "EGb6",
"EGg13", "EGg6", "EGr14", "EGg6", "EGg4", "EGr14", "EGb13", "EGr13",
"EGg6", "EGr1", "EGr6", "EGb1", "EGg4", "EGr6", "EGr1", "EGb14",
"EGr14", "EGr6", "EGg14", "EGg14", "EGr13", "EGg14", "EGb13",
"EGg13", "EGg1", "EGb13", "EGr4", "EGg14", "EGb6", "EGb13", "EGr4",
"EGb6", "EGb1", "EGr1", "EGb6", "EGg1", "EGr4", "EGr4", "EGg13",
"EGb4", "EGb1", "EGg6", "EGb4", "EGr1", "EGg13", "EGb4", "EGr13",
"EGg4", "EGr6", "EGr13", "EGb13", "EGb4", "EGr4", "EGg13", "EGb6",
"EGb14", "EGg4", "EGg1", "EGr13"), correct = structure(c(1L,
2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 2L), levels = c("1", "0"), class = "factor"), AS = c(6, 4,
13, 1, 1, 4, 4, 13, 1, 14, 6, 1, 13, 14, 4, 4, 14, 1, 13, 13,
4, 1, 6, 4, 13, 14, 1, 14, 14, 4, 14, 6, 1, 6, 6, 4, 14, 6, 14,
14, 14, 4, 4, 14, 4, 14, 6, 1, 13, 4, 13, 13, 1, 6, 13, 13, 1,
13, 1, 6, 6, 13, 1, 14, 4, 1, 4, 6, 13, 14, 6, 6, 1, 6, 13, 14,
4, 6, 13, 1, 4, 13, 4, 4, 1, 4, 6, 14, 4, 6, 14, 6, 13, 1, 13,
4, 14, 1, 14, 6, 13, 14, 14, 6, 13, 14, 1, 14, 4, 6, 6, 4, 4,
13, 13, 6, 6, 1, 4, 1, 14, 6, 13, 1, 4, 14, 4, 14, 1, 1, 13,
14, 1, 6, 13, 13, 13, 6, 6, 4, 1, 14, 4, 14, 13, 6, 13, 1, 1,
1, 13, 14, 14, 6, 6, 13, 1, 6, 13, 4, 14, 14, 1, 1, 1, 14, 1,
6, 13, 13, 6, 4, 4, 14, 13, 6, 4, 1, 14, 6, 4, 1, 6, 14, 4, 4,
6, 13, 6, 4, 4, 13, 14, 6, 13, 14, 13, 6, 14, 1, 13, 6, 1, 1,
13, 1, 1, 4, 14, 14, 13, 4, 14, 14, 1, 6, 4, 13, 4, 13, 4, 1,
1, 6, 4, 13, 1, 6, 4, 4, 14, 1, 14, 13, 4, 6, 6, 13, 13, 6, 14,
1, 4, 1, 4, 14, 14, 14, 13, 4, 14, 13, 1, 14, 4, 1, 1, 14, 1,
6, 13, 4, 1, 13, 14, 1, 14, 13, 4, 4, 1, 6, 6, 4, 1, 13, 13,
6, 1, 14, 14, 1, 14, 4, 14, 6, 1, 13, 6, 13, 4, 6, 4, 6, 4, 6,
6, 13, 13, 6, 13, 4, 4, 1, 13, 6, 6, 6, 14, 14, 4, 13, 4, 13,
14, 6, 6, 14, 13, 4, 14, 1, 14, 1, 1, 13, 4, 1, 6, 4, 1, 14,
13, 4, 4, 6, 4, 6, 1, 13, 13, 1, 13, 6, 4, 13, 1, 4, 14, 4, 14,
1, 1, 6, 6, 6, 14, 1, 1, 13, 6, 14, 6, 4, 14, 13, 4, 13, 1, 14,
1, 14, 6, 13, 14, 4, 14, 13, 4, 13, 6, 4, 4, 1, 4, 4, 14, 14,
4, 14, 4, 13, 1, 13, 13, 14, 4, 1, 1, 4, 1, 13, 13, 6, 14, 13,
6, 1, 13, 14, 6, 1, 14, 6, 1, 1, 1, 14, 4, 4, 1, 1, 4, 4, 14,
13, 13, 6, 14, 6, 14, 14, 6, 1, 14, 6, 6, 6, 6, 1, 6, 13, 13,
4, 6, 6, 1, 14, 13, 13, 1, 4, 13, 14, 14, 6, 1, 14, 1, 13, 1,
6, 4, 14, 4, 6, 4, 13, 13, 4, 4, 1, 14, 6, 13, 1, 1, 14, 4, 4,
6, 14, 14, 1, 14, 14, 1, 1, 14, 6, 13, 1, 14, 13, 1, 13, 1, 13,
6, 6, 1, 13, 1, 6, 6, 6, 4, 6, 4, 4, 4, 4, 4, 14, 6, 4, 13, 6,
13, 6, 14, 13, 14, 13, 13, 13, 6, 1, 13, 1, 4, 1, 6, 1, 14, 1,
14, 6, 1, 14, 1, 6, 6, 4, 1, 13, 14, 14, 14, 13, 14, 6, 4, 4,
14, 4, 13, 4, 13, 13, 14, 13, 1, 13, 4, 6, 6, 6, 13, 1, 4, 14,
14, 6, 1, 6, 13, 4, 4, 4, 14, 4, 14, 13, 13, 4, 6, 4, 14, 13,
1, 1, 13, 6, 4, 1, 14, 6, 1, 6, 14, 14, 6, 1, 1, 1, 4, 14, 6,
14, 1, 1, 14, 14, 4, 6, 13, 6, 14, 6, 4, 14, 13, 13, 6, 1, 6,
1, 4, 6, 1, 14, 14, 6, 14, 14, 13, 14, 13, 13, 1, 13, 4, 14,
6, 13, 4, 6, 1, 1, 6, 1, 4, 4, 13, 4, 1, 6, 4, 1, 13, 4, 13,
4, 6, 13, 13, 4, 4, 13, 6, 14, 4, 1, 13), Kategorie = structure(c(1L,
3L, 3L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 1L,
3L, 1L, 2L, 1L, 3L, 3L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 3L,
1L, 2L, 2L, 3L, 2L, 1L, 2L, 3L, 2L, 3L, 1L, 3L, 3L, 3L, 1L, 2L,
2L, 1L, 1L, 2L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 1L, 3L, 2L, 3L, 2L,
1L, 3L, 2L, 3L, 3L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 3L, 2L, 2L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 1L, 2L, 3L, 1L,
3L, 1L, 3L, 3L, 2L, 3L, 2L, 2L, 3L, 2L, 1L, 1L, 2L, 2L, 3L, 2L,
2L, 1L, 3L, 3L, 1L, 2L, 1L, 2L, 3L, 1L, 3L, 2L, 1L, 3L, 3L, 3L,
3L, 3L, 2L, 3L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 2L, 1L, 3L, 1L, 3L, 2L, 1L, 3L, 1L, 2L, 1L,
2L, 1L, 1L, 3L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 3L,
1L, 2L, 2L, 3L, 3L, 1L, 3L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 1L, 1L,
3L, 3L, 3L, 3L, 1L, 1L, 1L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 1L, 2L,
3L, 2L, 2L, 1L, 3L, 2L, 3L, 3L, 1L, 1L, 3L, 1L, 2L, 1L, 1L, 2L,
3L, 2L, 2L, 2L, 1L, 1L, 3L, 2L, 1L, 1L, 2L, 2L, 3L, 1L, 3L, 3L,
2L, 2L, 1L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 2L, 3L, 3L,
3L, 2L, 1L, 2L, 1L, 2L, 3L, 3L, 3L, 1L, 2L, 1L, 2L, 1L, 3L, 3L,
3L, 3L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 3L,
2L, 3L, 1L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 3L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 3L, 1L, 2L, 3L, 2L, 2L, 1L, 1L, 3L, 1L, 2L, 1L,
2L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 3L, 1L, 1L, 3L, 2L, 1L, 3L, 2L,
3L, 1L, 3L, 2L, 3L, 3L, 2L, 1L, 2L, 3L, 3L, 3L, 3L, 1L, 2L, 3L,
3L, 2L, 2L, 3L, 1L, 2L, 3L, 3L, 2L, 3L, 2L, 2L, 3L, 2L, 1L, 2L,
2L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 2L, 2L, 2L, 1L, 1L, 3L, 1L, 1L,
2L, 3L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 1L, 1L, 2L, 3L,
2L, 3L, 1L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 3L, 3L,
2L, 1L, 2L, 2L, 1L, 3L, 3L, 1L, 3L, 2L, 1L, 2L, 3L, 2L, 3L, 2L,
3L, 3L, 2L, 3L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 1L, 2L, 2L,
3L, 1L, 2L, 3L, 2L, 1L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 1L, 2L,
2L, 1L, 3L, 3L, 2L, 3L, 1L, 3L, 3L, 3L, 3L, 2L, 1L, 2L, 3L, 2L,
3L, 2L, 1L, 3L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 3L, 3L, 3L, 2L, 3L, 2L, 3L, 1L, 1L, 3L, 1L, 1L, 1L,
1L, 3L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 1L, 2L, 2L, 1L, 1L, 1L,
3L, 1L, 3L, 3L, 2L, 3L, 1L, 3L, 2L, 3L, 2L, 2L, 3L, 1L, 1L, 2L,
2L, 2L, 1L, 1L, 3L, 3L, 3L, 3L, 1L, 2L, 3L, 1L, 2L, 1L, 1L, 1L,
3L, 2L, 2L, 3L, 1L, 3L, 2L, 3L, 1L, 2L, 3L, 1L, 3L, 1L, 2L, 2L,
1L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 3L,
1L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 3L, 1L,
3L, 1L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 3L, 2L, 2L, 3L, 1L, 3L, 2L,
3L, 3L, 1L, 2L, 3L, 3L, 1L, 3L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 2L,
1L, 3L, 2L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 2L, 3L, 3L, 2L, 1L, 1L,
2L, 1L, 3L, 2L, 1L, 3L, 2L, 3L, 3L, 1L, 1L, 3L, 2L, 1L, 1L, 2L,
2L, 3L), levels = c("selbst", "andere", "niemand"), class = "factor"),
PW = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), subjects = c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L)), class = "data.frame", row.names = c(8L,
9L, 10L, 12L, 13L, 14L, 15L, 16L, 20L, 23L, 24L, 25L, 26L, 27L,
30L, 31L, 32L, 34L, 35L, 36L, 37L, 39L, 40L, 43L, 44L, 47L, 48L,
50L, 52L, 54L, 55L, 57L, 59L, 60L, 62L, 64L, 65L, 67L, 69L, 75L,
76L, 77L, 79L, 80L, 81L, 82L, 84L, 87L, 90L, 91L, 92L, 93L, 94L,
96L, 98L, 101L, 104L, 105L, 107L, 109L, 112L, 115L, 117L, 118L,
124L, 125L, 126L, 127L, 128L, 129L, 130L, 132L, 135L, 138L, 139L,
145L, 147L, 150L, 151L, 153L, 154L, 155L, 156L, 157L, 158L, 161L,
162L, 170L, 171L, 172L, 174L, 175L, 176L, 181L, 183L, 184L, 187L,
188L, 189L, 190L, 191L, 194L, 197L, 198L, 200L, 201L, 204L, 206L,
214L, 218L, 219L, 220L, 221L, 226L, 228L, 229L, 232L, 234L, 235L,
236L, 239L, 240L, 241L, 243L, 244L, 245L, 248L, 249L, 250L, 251L,
252L, 253L, 254L, 256L, 260L, 261L, 264L, 265L, 268L, 269L, 270L,
271L, 272L, 273L, 274L, 276L, 277L, 281L, 283L, 284L, 287L, 288L,
289L, 290L, 293L, 294L, 295L, 297L, 298L, 299L, 301L, 302L, 304L,
306L, 309L, 313L, 314L, 318L, 320L, 321L, 322L, 329L, 330L, 334L,
335L, 337L, 339L, 341L, 342L, 343L, 344L, 347L, 350L, 351L, 354L,
355L, 358L, 360L, 361L, 362L, 365L, 366L, 370L, 372L, 374L, 375L,
377L, 379L, 380L, 381L, 383L, 385L, 388L, 393L, 395L, 397L, 399L,
401L, 402L, 405L, 406L, 408L, 409L, 410L, 411L, 412L, 413L, 417L,
418L, 419L, 420L, 422L, 424L, 426L, 427L, 430L, 431L, 432L, 436L,
437L, 440L, 441L, 442L, 444L, 448L, 449L, 450L, 451L, 454L, 455L,
456L, 458L, 459L, 461L, 462L, 463L, 464L, 470L, 471L, 472L, 473L,
474L, 475L, 476L, 480L, 481L, 482L, 484L, 485L, 486L, 488L, 491L,
492L, 494L, 495L, 496L, 497L, 502L, 504L, 505L, 508L, 510L, 514L,
515L, 517L, 522L, 525L, 526L, 527L, 529L, 532L, 533L, 536L, 538L,
539L, 540L, 543L, 544L, 546L, 548L, 552L, 553L, 555L, 556L, 557L,
563L, 564L, 565L, 566L, 569L, 576L, 578L, 579L, 580L, 581L, 583L,
584L, 586L, 587L, 590L, 591L, 592L, 593L, 596L, 598L, 601L, 602L,
604L, 606L, 610L, 611L, 612L, 613L, 614L, 616L, 619L, 620L, 621L,
623L, 626L, 627L, 628L, 631L, 632L, 633L, 634L, 637L, 639L, 640L,
643L, 644L, 645L, 646L, 647L, 649L, 652L, 654L, 658L, 660L, 661L,
662L, 666L, 667L, 674L, 676L, 680L, 682L, 684L, 685L, 686L, 688L,
689L, 690L, 694L, 695L, 697L, 698L, 699L, 700L, 704L, 705L, 707L,
708L, 711L, 713L, 717L, 718L, 719L, 720L, 723L, 724L, 725L, 726L,
730L, 732L, 733L, 735L, 738L, 740L, 743L, 744L, 745L, 747L, 748L,
749L, 751L, 756L, 759L, 760L, 762L, 763L, 764L, 765L, 766L, 767L,
768L, 770L, 774L, 776L, 778L, 780L, 785L, 787L, 789L, 793L, 795L,
798L, 799L, 800L, 801L, 802L, 803L, 804L, 808L, 811L, 813L, 815L,
816L, 817L, 819L, 822L, 824L, 825L, 826L, 827L, 829L, 832L, 833L,
834L, 835L, 838L, 839L, 840L, 845L, 848L, 849L, 850L, 853L, 854L,
855L, 860L, 862L, 867L, 868L, 869L, 871L, 873L, 874L, 875L, 876L,
878L, 879L, 882L, 883L, 884L, 888L, 889L, 893L, 894L, 896L, 897L,
898L, 900L, 901L, 904L, 905L, 906L, 907L, 908L, 909L, 912L, 913L,
915L, 917L, 918L, 920L, 922L, 923L, 924L, 926L, 929L, 931L, 933L,
937L, 940L, 944L, 946L, 947L, 949L, 954L, 955L, 956L, 957L, 959L,
960L, 961L, 963L, 964L, 965L, 971L, 975L, 977L, 978L, 980L, 981L,
982L, 983L, 985L, 987L, 990L, 991L, 992L, 995L, 996L, 999L, 1002L,
1006L, 1007L, 1009L, 1013L, 1016L, 1017L, 1018L, 1021L, 1022L,
1024L, 1025L, 1026L, 1027L, 1028L, 1030L, 1032L, 1033L, 1037L,
1039L, 1040L, 1041L, 1042L, 1043L, 1044L, 1045L, 1048L, 1049L,
1055L, 1056L, 1057L, 1067L, 1069L, 1070L, 1071L, 1072L, 1073L,
1075L, 1076L, 1077L, 1078L, 1081L, 1082L, 1083L, 1084L, 1086L,
1087L, 1089L, 1091L, 1092L, 1094L, 1095L, 1097L, 1098L, 1102L,
1103L, 1104L, 1107L, 1108L, 1109L, 1110L, 1114L, 1115L, 1117L,
1120L, 1121L, 1123L, 1126L, 1127L, 1128L, 1131L, 1133L, 1137L,
1138L, 1142L, 1146L, 1147L, 1148L, 1151L, 1152L, 1154L, 1158L,
1159L, 1161L, 1166L, 1167L, 1168L, 1169L, 1170L, 1174L, 1175L,
1178L, 1179L, 1180L, 1184L, 1185L, 1187L, 1190L, 1194L, 1196L,
1198L, 1201L, 1202L, 1203L, 1204L, 1207L, 1208L, 1210L, 1212L,
1213L, 1214L, 1215L, 1217L, 1218L, 1220L, 1221L, 1222L, 1223L,
1226L, 1229L, 1233L, 1238L, 1239L, 1242L, 1243L, 1244L, 1245L,
1246L, 1248L, 1250L, 1251L, 1253L, 1254L, 1255L, 1257L, 1258L,
1259L, 1263L, 1265L, 1267L, 1268L, 1273L, 1274L, 1275L, 1278L,
1281L, 1282L, 1283L, 1284L, 1285L))
This is what I get when I use the code .
I am sorry for using the wrong wording (My data analysis is mostly in german so there a german words most of the time). I corrected my words in the code.
AS = association strength and Kategorie = category are my within-sibject factors. And grouped by these within
Hitrate <- data[,.(hitRate = sum(correct)/15),
by = .(subjects, Kategorie, AS)]
would like to calculate a hit rate that is calculated over these two within factors and per subject, in order to be able to calculate a mixed anova later.