Hey folks
How can I calculate the CI 95% in the model:
temp <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)
tx <- c(33,19,35,32,3,13,11,2,24,36,40,15,10,29,50,42,8,26,16,7,10,21,47,29,40,8)
dados1 <- data.frame(temp, tx)
m1 <- prais_winsten(tx ~ temp, index = "temp", data = dados1)
summary(m1)
call:
Residuals:
Min 1Q Median 3Q Max
-21.01 -12.91 -0.83 11.72 26.69
AR(1) coefficient rho after 5 iterations: 0.2279
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.67389 7.19953 3.149 0.00434 **
temp 0.04233 0.46369 0.091 0.92802
Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 14.16 on 24 degrees of freedom
Multiple R-squared: 0.02283, Adjusted R-squared: -0.01788
F-statistic: 0.5608 on 1 and 24 DF, p-value: 0.4612
Durbin-Watson statistic (original): 1.5
Durbin-Watson statistic (transformed): 1.789
Can anybody teach me how to script some way to perform it?
Thanks