Dear all
i run the the following code
Load Libraries
{r}
library("tidyverse")
library("lubridate")
library("tsibble")
library("tsibbledata")
library("feasts")
library("fable")
library("distributional")
Create variables
{r}
victoria_pigs <- aus_livestock %>%
filter(State == "Victoria" & Animal=="Pigs")
Fitting the model
{r}
fit <- victoria_pigs%>%
model(ARIMA(Count))
report(fit)
Series: Count
Model: ARIMA(2,1,2)(0,0,2)[12]
Coefficients:
ar1 ar2 ma1 ma2 sma1 sma2
-1.0110 -0.2209 0.4194 -0.4604 0.4818 0.2070
s.e. 0.0767 0.0796 0.0752 0.0795 0.0432 0.0429
sigma^2 estimated as 65208832: log likelihood=-5800.22
AIC=11614.43 AICc=11614.63 BIC=11644.69
how do i extract the constant c ? when i run the code i cannot see it, in fact is it possible to extract the whole equation? , 9.5 Non-seasonal ARIMA models | Forecasting: PrinciplesΒ andΒ Practice (3rd ed)
Tony
Not all models include a constant. Chapter 9 covers the effect of having c β 0. In the reprex below the model chosen by the ARIMA() function for the h02 data has a drift with non-zero value for c, while the model for victoria_pigs has no drift and c = 0.
library(fpp3)
#> ββ Attaching packages ββββββββββββββββββββββββββββββββββββββββββββ fpp3 0.4.0 ββ
#> β tibble 3.1.8 β tsibble 1.1.3
#> β dplyr 1.0.99.9000 β tsibbledata 0.4.1
#> β tidyr 1.2.1 β feasts 0.3.0.9000
#> β lubridate 1.9.0 β fable 0.3.2.9000
#> β ggplot2 3.4.0
#> ββ Conflicts βββββββββββββββββββββββββββββββββββββββββββββββββ fpp3_conflicts ββ
#> β lubridate::date() masks base::date()
#> β dplyr::filter() masks stats::filter()
#> β tsibble::intersect() masks base::intersect()
#> β tsibble::interval() masks lubridate::interval()
#> β dplyr::lag() masks stats::lag()
#> β tsibble::setdiff() masks base::setdiff()
#> β tsibble::union() masks base::union()
victoria_pigs <- aus_livestock %>%
filter(State == "Victoria" & Animal=="Pigs")
h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost)/1e6)
victoria_pigs %>%
model(ARIMA(Count)) %>%
report()
#> Series: Count
#> Model: ARIMA(2,1,2)(0,0,2)[12]
#>
#> Coefficients:
#> ar1 ar2 ma1 ma2 sma1 sma2
#> -1.0110 -0.2209 0.4194 -0.4604 0.4818 0.2070
#> s.e. 0.0767 0.0796 0.0752 0.0795 0.0432 0.0429
#>
#> sigma^2 estimated as 65208832: log likelihood=-5800.22
#> AIC=11614.43 AICc=11614.63 BIC=11644.69
h02 %>%
model(ARIMA(Cost)) %>%
report()
#> Series: Cost
#> Model: ARIMA(4,0,0)(1,1,1)[12] w/ drift
#>
#> Coefficients:
#> ar1 ar2 ar3 ar4 sar1 sma1 constant
#> 0.1381 0.4021 0.3031 -0.1577 0.1789 -0.6713 0.0080
#> s.e. 0.0764 0.0719 0.0753 0.0784 0.1261 0.0940 0.0014
#>
#> sigma^2 estimated as 0.002767: log likelihood=293.91
#> AIC=-571.83 AICc=-571.04 BIC=-545.77
Created on 2022-11-25 with reprex v2.0.2
To extract the estimated coefficients use the tidy() function from {fabletools}
library(fpp3)
#> ββ Attaching packages ββββββββββββββββββββββββββββββββββββββββββββ fpp3 0.4.0 ββ
#> β tibble 3.1.8 β tsibble 1.1.3
#> β dplyr 1.0.99.9000 β tsibbledata 0.4.1
#> β tidyr 1.2.1 β feasts 0.3.0.9000
#> β lubridate 1.9.0 β fable 0.3.2.9000
#> β ggplot2 3.4.0
#> ββ Conflicts βββββββββββββββββββββββββββββββββββββββββββββββββ fpp3_conflicts ββ
#> β lubridate::date() masks base::date()
#> β dplyr::filter() masks stats::filter()
#> β tsibble::intersect() masks base::intersect()
#> β tsibble::interval() masks lubridate::interval()
#> β dplyr::lag() masks stats::lag()
#> β tsibble::setdiff() masks base::setdiff()
#> β tsibble::union() masks base::union()
victoria_pigs <- aus_livestock %>%
filter(State == "Victoria" & Animal=="Pigs")
h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost)/1e6)
victoria_pigs %>%
model(ARIMA(Count)) %>%
tidy()
#> # A tibble: 6 Γ 8
#> Animal State .model term estimate std.error statistic p.value
#> <fct> <fct> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Pigs Victoria ARIMA(Count) ar1 -1.01 0.0767 -13.2 9.25e-35
#> 2 Pigs Victoria ARIMA(Count) ar2 -0.221 0.0796 -2.78 5.68e- 3
#> 3 Pigs Victoria ARIMA(Count) ma1 0.419 0.0752 5.58 3.75e- 8
#> 4 Pigs Victoria ARIMA(Count) ma2 -0.460 0.0795 -5.79 1.19e- 8
#> 5 Pigs Victoria ARIMA(Count) sma1 0.482 0.0432 11.1 3.47e-26
#> 6 Pigs Victoria ARIMA(Count) sma2 0.207 0.0429 4.83 1.79e- 6
h02 %>%
model(ARIMA(Cost)) %>%
tidy()
#> # A tibble: 7 Γ 6
#> .model term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 ARIMA(Cost) ar1 0.138 0.0764 1.81 7.23e- 2
#> 2 ARIMA(Cost) ar2 0.402 0.0719 5.59 7.53e- 8
#> 3 ARIMA(Cost) ar3 0.303 0.0753 4.02 8.22e- 5
#> 4 ARIMA(Cost) ar4 -0.158 0.0784 -2.01 4.56e- 2
#> 5 ARIMA(Cost) sar1 0.179 0.126 1.42 1.58e- 1
#> 6 ARIMA(Cost) sma1 -0.671 0.0940 -7.14 1.89e-11
#> 7 ARIMA(Cost) constant 0.00798 0.00136 5.86 2.00e- 8
Created on 2022-11-25 with reprex v2.0.2
2 Likes
system
Closed
December 2, 2022, 6:23pm
4
This topic was automatically closed 7 days after the last reply. New replies are no longer allowed. If you have a query related to it or one of the replies, start a new topic and refer back with a link.