Statistical Modelling

Dependent Va Area	riable = Burned		Subgroups							
Independent Variable	FWI	1 = low	2 = moderate	3= high	4= very high					
	Elevation	1 = 0-500m	2= 500-1000m	3= >1000m						
	Slope	1= 0-5 °	2= 5-10 °	3= 10-15 °	4= 15-20°	5= 20-25 °	6= 25- 30 °	7= 30- 35 °	8= 35- 40 °	9= >40 °
	Aspect	Ν	NE	E	SE	S	SW	W	NW	
	Land use: CLC 1	1 = Forest and semi natural areas	2 = Agricultural areas	3= Artificial surfaces	4= water bodies	5= wetlands				
	Land use: CLC 2	3= forests	9=Open spaces with little or no vegetation	12= Scrub and/or herbaceous vegetation associations						
	Road network Distance 0-500	major	minor	Very small	Paths	Link				
	Road network Distance 500-1000	major	minor	Very small	Paths	Link				
	Road network Distance 0> 1000	major	minor	Very small	Paths	Link				
	Total Burned area	2001-2021	2001-2011	2011-2021						

What I have done

Bin fires in RStudio → Histogram

RandomF_his <- hist(log(RandomF\$area_ha),breaks =seq(from= 0,to=12, by=0.7), main ="FWIL Burned Areas",xlab="Burned Area LOG HA",ylab= "Frequency") RandomF_info <- hist(log(RandomF\$area_ha),breaks =seq(from=0,to=12, by=0.7), main ="FWIL Burned Areas",xlab="Burned Area LOG HA",ylab= "Frequency") RandomF_info

RandomF_info

RandomF_counts <- RandomF_info \$counts

RandomF_counts

FWIL Burned Areas

Barplot

The number of counts per each bin and the sum of them

counts <- RandomF_counts

counts_sum <- 14613

find the exponential value of bin midpoints

ksi <- RandomF_his\$mids

bin.mid.exp <- exp(ksi)</pre>

scale the burned area for each bin: multiply each bin count by the exponential value of the bin midpoint

tba <- bin.mid.exp*countsc

create a data frame for the barplot

Total_dec <- data.frame(ksi, tba)

Create the barplot

(bp <- barplot(Total_dec\$tba, names.arg=Total_dec\$ksi,</pre>

space = c(0, diff(Total_dec\$ksi)),

col="lightblue", xlab="bins", ylab="area"))

I have to create a normal curve distribution scaled to the data

Attach a matlab code but I should convert in R

<u># first find the bins :</u>

[global_height,global_bin]=hist(log(data(:,1)),20);

statsall.bins=global_bin;

statsall.heights=global_height;

%this will make statsall.bins=global_bin;

global_height_exp=global_height.*exp(global_bin)/sum(years);

HOW TO INTERPRET WITH THIS IN RSTUDIO

%make a line that follows the normal distribution in the histogram

% total standard model

% this here is the normal distribution function that the values need to be fit to lin=inline('beta(3)/((2*3.14159.*beta(2).^2)^(1/2)).*exp(-(x-beta(1)).^2/(2.*beta(2).^2))','beta','x'); % this is for finding the starting values for the fitting beta=[mean(global_bin),2,10^6]; % this is the actual fitting betaend=nlinfit (global_bin,global_height_exp,lin,beta); % now we plot it. figure hold on bar(global_bin/2.3026,global_height_exp,'FaceColor',[.7.7.7]); xlabel('log_10 Fire size class [ha]') ylabel('Total contribution to annual burned area [ha/year]')

meanval=betaend(1);

plot(global_bin,lin(betaend,global_bin),'k')
% this one check how well the fit has worked
c=corrcoef(lin(betaend,global_bin),global_height_exp);
ccs=c(1,2);