
7/13/23, 3:53 PM R_any_1

10.173.2.243:8888/lab/tree/scripts/cust_car/R_any_1.ipynb 1/4

we create a sample data frame with two columns: 'Group' and 'Value'. We
then measure the execution time of the grouping and summarizing
operation and the splitting operation.

By using system.time() in R and timeit.timeit() in Python, we can obtain the
elapsed time for the respective operations. The number parameter specifies
the number of times the operation should be executed to obtain an
average execution time.

Using R
In [14]: library(dplyr)

#library(microbenchmark)

Create a sample data frame
df <- data.frame(Group = rep(letters[1:3], each = 100000),
 Value = rnorm(300000))

Measure the time taken for grouping and summarizing

grouping_time <- mean(replicate(10, {
 system.time({
 df_grouped <- df %>% group_by(Group) %>%
 summarise(Sum = sum(Value), Mean = mean(Value))
 })["elapsed"]
}))

Measure the time taken for splitting

splitting_time <- mean(replicate(10, {
 system.time({
 df_split <- split(df, df$Group)
 })["elapsed"]
}))

7/13/23, 3:53 PM R_any_1

10.173.2.243:8888/lab/tree/scripts/cust_car/R_any_1.ipynb 2/4

Grouping Time: 0.0117 seconds
Splitting Time: 0.0848 seconds

the number parameter is used in the timeit.timeit() function in Python and the
system.time() function in R. This parameter specifies the number of times the given
operation or function should be executed in order to calculate the average execution time.

By repeating the execution of the operation multiple times, we can obtain a more accurate
measurement of the execution time, reducing the impact of any fluctuations caused by
external factors such as system load or resource allocation.

In the code snippets, the number parameter is set to 10, indicating that the operation will
be executed 10 times in both R and Python. The execution times for each repetition are
recorded, and the average execution time is calculated based on those results.

Adjusting the number parameter allows you to control the trade-off between accuracy and
execution time. Higher values of number provide more precise results but also increase the
overall time taken to measure the execution time. Lower values may introduce more
variability in the measurements but lead to quicker results.

Print the results
cat("Grouping Time:", grouping_time, "seconds\n")
cat("Splitting Time:", splitting_time, "seconds\n")

In [17]: library(ggplot2)

Create a sample data frame
df <- data.frame(
 x = c(1, 2, 3, 4, 5),
 y = c(2, 4, 6, 8, 10),
 group = c('A', 'A', 'B', 'B', 'C')
)

Create a scatter plot with different colors and shapes for each group
ggplot(df, aes(x, y, color = group, shape = group),width=100) +
 geom_point(size = 4) +
 labs(x = 'X-axis', y = 'Y-axis', title = 'Scatter Plot')+
 theme_minimal()

7/13/23, 3:53 PM R_any_1

10.173.2.243:8888/lab/tree/scripts/cust_car/R_any_1.ipynb 3/4

In [23]: library(ggplot2)

Create a sample data frame
df <- data.frame(
 x = 1:100,
 y = rnorm(100),
 group = rep(letters[1:4], each = 25),
 category = rep(c("A", "B"), each = 50)
)

Create a scatter plot with facet wrapping
ggplot(df, aes(x, y)) +
 geom_point() +
 facet_wrap(~ group + category, ncol = 2) +
 labs(x = "X-axis", y = "Y-axis", title = "Facet Wrap Plot")

7/13/23, 3:53 PM R_any_1

10.173.2.243:8888/lab/tree/scripts/cust_car/R_any_1.ipynb 4/4

