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Abstract

Soil microbial communities are crucial for regulating the stability and degradation of

contaminated land. However, the temporal response strategies of particular microbial

groups to biotic introductions and their contributions to ecosystem functions and ser-

vices (i.e., ‘multifunctionality’) in contaminated soils have yet to be investigated. Here,

we present results from a 90‐day microcosm experiment aiming to evaluate the tem-

poral changes in bacterial communities and functions in response to microbial and

plant additions in a contaminated agricultural soil. In addition, we quantified the con-

tributions of specific bacterial taxa with different response strategies over time to

alterations in ecosystem multifunctionality in pollutant degradation (polyphenol oxi-

dase) and the cycling of carbon (dehydrogenase), nitrogen (urease and available nitro-

gen), phosphorus (available phosphorus), and potassium (available potassium). Results

showed that native bacterial communities exhibited strong resilience to the intro-

duced microbial consortium and were altered by plant growth. Plant‐enriched bacte-

rial taxa were located in the core and central positions of the co‐occurrence networks

and had considerable influence on the other nodes. Plant growth substantially influ-

enced soil multifunctionality, in a process driven by specific bacterial taxa with differ-

ent response strategies. The more tolerant taxa contributed most to multienzyme

activities, whereas the more affected taxa largely determined multinutrient levels in

the soil. These results provide a new perspective in disentangling the roles of plant‐

associated bacteria in the assembly of community interactions and ecosystem

multifunctionality of contaminated agricultural soils.
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1 | INTRODUCTION

Soil ecosystems worldwide are facing increasing environmental alter-

ations and land degradation from anthropogenic pressures, global cli-

mate change, and biotic perturbations, which can profoundly

influence ecosystem productivity and stability (Bardgett & van der
wileyonlinelibrar
Putten, 2014; Hassan et al., 2016; McGill et al., 2007; Philippot

et al., 2013; Wagg, Bender, Widmer, & van der Heijden, 2014). Soil

microorganisms represent one of the largest biodiversity reservoirs

in terrestrial ecosystems. Microorganisms play key roles in maintaining

multiple ecosystem functions and services simultaneously (hereafter

‘multifunctionality’), such as primary production, litter decomposition,
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nutrient cycling, and climate regulation (Delgado‐Baquerizo et al.,

2016; Delgado‐Baquerizo et al., 2017; Haroon et al., 2013; Hicks

Pries, Castanha, Porras, & Torn, 2017). In addition, microbial communi-

ties respond rapidly to environmental disturbances, and their sensitive

responses can be monitored to assess the potential soil stability and

degradation (Jiao et al., 2018). Therefore, it is of fundamental signifi-

cance to understand the mechanism(s) involved in the maintenance

of microbial communities and to discern their intrinsic dynamic pro-

cesses occurring at the species‐level following environmental

disturbances.

Microorganisms exhibit remarkable stability in the face of distur-

bances, largely due to their high metabolic flexibility and physiological

tolerance, as well as high abundance, widespread dispersal, rapid

growth, and evolutionary adaptation (Allison & Martiny, 2008;

Fuhrman, Cram, & Needham, 2015). Generally, the stability of micro-

bial ecosystems is determined by three mechanisms (Allison &

Martiny, 2008): (a) resistance, when the microbial community displays

tolerance to a disturbance (Jiao et al., 2016; Jiao et al., 2016); (b) resil-

ience, when the microbial community is changed by a disturbance yet

rapidly recovers to its initial or alternative stable state (Griffiths &

Philippot, 2013; Hodgson, McDonald, & Hosken, 2015); and (c) func-

tional redundancy, when after a disturbance the ecosystem processes

remain similar to their original state, despite the microbial community

being substantially altered without recovery. Meanwhile, an individual

microbial species can adopt three primary response strategies to envi-

ronmental disturbances according to their apparent adaptations: (a)

adapt and maintain the abundance unchanged (i.e., ‘tolerant’); (b)

become negatively affected and reduced in abundance (i.e., ‘sensitive’);

and (c) benefit from the new conditions and increase in abundance

(i.e., ‘opportunist’; Evans & Hofmann, 2012; Shade et al., 2012;

Szekely & Langenheder, 2017). A previous study has identified specific

phylogenetic groups of microorganisms with distinct response

strategies to rainfall‐induced carbon dioxide pulses in a terrestrial eco-

system (Placella, Brodie, & Firestone, 2012).

Environmental contamination is a global problem that causes

damage to natural ecosystems and harms animal health (Jiao, Liu,

et al., 2016). Due to wastewater irrigation or illegal discharges, an

increasing influx of inorganic (e.g., heavy metals) and organic (e.g.,

petroleum hydrocarbons) contaminants could change soil physico-

chemical properties, leading to serious land degradation (Bayat et al.,

2015; Dawson et al., 2007; Peterson et al., 2003; Wang, Zhao, Zeng,

Hu, & Yu, 2015). Restoration ecology is a subject related to the “inten-

tional human intervention in enhancing ecosystem recovery after dis-

turbance” (Young, Petersen, & Clary, 2005), and the existing research

has mainly focused on plants (Kardol & Wardle, 2010; Wardle &

Peltzer, 2007). Given the influence of biodiversity losses upon ecosys-

tem functioning and stability, the reintroduction of flora is considered

the best approach for ecological restoration. During the restoration

process, soil microorganisms may act as key engineers, mediating the

re‐establishment of biodiversity and ecosystem functions (Heneghan

et al., 2008; Young et al., 2005). In addition, belowground microorgan-

isms can promote plant establishment through symbiotic interactions

(Requena, Perez‐Solis, Azcon‐Aguilar, Jeffries, & Barea, 2001; Smith
et al., 2003). However, it is challenging to restore soil processes,

because microbial ecosystem dynamics are complex, nonlinear, and

only partly unpredictable (Nemergut et al., 2013). Moreover, historical

contingency, known as priority effects, is typically an obstacle for soil

colonization by newly introduced microbial species (Vannette &

Fukami, 2014). Currently, there are a growing number of studies

investigating the temporal dynamics of microbial communities in

response to environmental contamination, defined as microbial suc-

cession (Fierer, Nemergut, Knight, & Craine, 2010; Jiao, Chen, et al.,

2016; Jiao, Liu, et al., 2016). Yet we still lack basic knowledge of

how microbial species interact and idiosyncratic effects influence bio-

diversity and ecosystem functioning during microbial community suc-

cession with one or more introduced microbial consortia (Calderon

et al., 2017; Harris, 2009; Laughlin, 2014).

Soil microbe–plant interactions and feedbacks are closely associ-

ated with the multifunctionality of terrestrial ecosystems (Bagchi

et al., 2014; Wagg et al., 2014). For example, aboveground plant rich-

ness plays a positive role in belowground ecosystem multifunctionality

in global drylands (Maestre et al., 2012). Plants stimulate (select for)

the evolution of new adaptive traits in root‐associated bacteria, such

as genes related to carbohydrate metabolism (Levy et al., 2018). Roots

release exudates and mucilage into their surrounding soil environment

and thus subsequently shape the associated microbial communities

(Badri & Vivanco, 2009; Shi et al., 2011). Moreover, plant‐associated

microorganisms drive numerous ecosystem process, such as nutrient

acquisition by plants and the cycling of resources between above-

ground and belowground communities (De Vries et al., 2013; van

der Heijden, Bardgett, & van Straalen, 2008). Species invasion is an

important biotic and environmental perturbation that can alter soil

nutrient cycling at the global scale (Rice, Westerman, & Federici,

2004). Restoration of biological invasions requires an active re‐

establishment of the native community (Kardol & Wardle, 2010),

which should be a determinant for the restoration of ecological com-

munities and ecosystem functions (Stinson et al., 2006). In addition,

soil legacies can persist after the removal of invasive species and sub-

sequently alter ecosystem processes (Marchante, Kjøller, Struwe, &

Freitas, 2009). Invasive belowground microorganisms can also greatly

alter aboveground and belowground ecosystem properties (Hendrix

et al., 2008; Wardle & Peltzer, 2007). Currently, it is unclear how eco-

system multifunctionality is influenced jointly by reintroduced micro-

bial flora and plants, particularly in contaminated soils.

Here, we characterized the temporal change in bacterial commu-

nities to biotic introductions (an introduced microbial consortium and

three legume plants) in a multicontaminated agricultural soil. We also

assessed the contributions of particular bacterial taxa with different

response strategies to alterations in ecosystem multifunctionality.

Phenanthrene, n‐octadecane, and cadmium were used to prepare the

contaminated soil, because they are prevalent in oil‐contaminated

areas. A contaminant‐degrading microbial consortium enriched from

an oil‐contaminated soil was obtained from our previous work, as it

could utilize phenanthrene and n‐octadecane as the sole carbon under

the stress of cadmium chloride (CdCl2; Jiao et al., 2017). Three legume

plants capable of forming nodules via symbiosis with N2‐fixing
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rhizobia were selected, and these plants could generate specific asso-

ciations with their root‐associated microbiomes (Xiao et al., 2017). Soil

bacterial communities were analyzed by high‐throughput sequencing

of the 16S ribosomal RNA gene in temporal microcosms over a 90‐

day period. We hypothesized that the temporal turnover of soil bacte-

rial communities exhibits distinct trends in response to biotic introduc-

tions, whereas particular bacterial taxa with different response

strategies influence the community assembly and ecosystem

multifunctionality of the experimentally contaminated soil.
2 | MATERIALS AND METHODS

2.1 | Contaminated soil preparation

In July 2014, approximately 50 kg of soil sample was taken from a

depth of 0–20 cm in a cornfield in Yangling, Shaanxi Province, North-

west China (108°4′51″E, 34°17′31″N). This soil had a sandy loam tex-

ture, and its detailed properties are shown in Table S1. The soil was

sieved (5‐mm mesh size) to remove any plant debris and large clods.

Subsamples of the original soil were spiked with a mixture of phenan-

threne and n‐octadecane in dichloromethane at a concentration of

1,000 mg kg−1, and also CdCl2 in water at 50 mg kg−1. The dichloro-

methane solution containing the organic contaminants was first mixed

with 200 g of soil. Then, after the complete evaporation of the dichlo-

romethane under a fume hood, the residual was thoroughly mixed

with a further 800 g of soil and a CdCl2 solution to a final concentra-

tion of 50 mg kg−1. The spiked soil subsamples were incubated for

5 days in the dark with sterile water at ~15% soil moisture to reach

equilibrium.
2.2 | Microbial enrichment consortium

The contaminant‐degrading microbial consortium used in this study

was enriched from contaminated soil surrounding an oil refinery in

Yulin, Shaanxi Province, Northwest China (Jiao, Zhang, et al., 2017).

The enrichment culture was obtained by using a basal salt medium

supplemented with 250 mg L−1 phenanthrene + 250 mg L−1 n‐

octadecane + 50 mg L−1 CdCl2, with 10 successive subcultures

established at 10‐day intervals. This microbial consortium was cul-

tured in the same medium supplemented with the corresponding

levels of organic and inorganic contaminants and was incubated on a

rotating shaker for 10 days (28°C, 140 rpm). Then cells were harvested

by centrifugation (6,000×g) for 30 min, washed twice, and resus-

pended in a 0.9% NaCl solution (~109 CFU ml−1) for use as inoculum.

This microbial consortium could degrade 90% of phenanthrene

(250 mg L−1) and n‐octadecane (250 mg L−1) in the presence of CdCl2

(50 mg L−1) within 10 days (Jiao, Zhang, et al., 2017). It was mainly

composed of bacterial taxa belonging to the genera Aquabacterium

(23.5%), Naxibacter (8.6%), Dokdonella (3.9%), and Novosphingobium

(3.3%; Figure S1).
2.3 | Experimental design and sampling

The experiment tested four treatments: (a) unplanted soil with the

microbial consortium inoculum sterilized by autoclave at 120°C for

30 min (control); (b) unplanted soil with the microbial consortium inoc-

ulum (bacteria); (c) soil with legumes planted and the microbial consor-

tium inoculum sterilized (plant); and (d) soil with legumes and the

microbial consortium inoculum (bacteria + plant [BP]). To analyze the

temporal succession of microbial communities in microcosms, each

treatment was sampled at five time points after introduction of micro-

bial consortium and/or transplanting of legume plants: 10, 20, 30, 60,

and 90 days.

The contaminated soils (~2 kg) were distributed into pots (20‐cm

diameter) that had a depth of 15 cm. The control and bacteria treat-

ments received 10 ml of sterilized and active inoculum, respectively.

For the plant and BP treatments, the three common legumes were

Robinia pseudoacacia (woody), Medicago sativa (herbaceous), and Vicia

villosa (herbaceous). Seeds of R. pseudoacacia (robinia), M. sativa

(alfalfa), and V. villosa (vetch) were surface sterilized and germinated

at 28°C for 36 hr under aseptic conditions. Five robinia, 20 alfalfa,

and 20 vetch seedlings (each 1 cm in length) were transplanted per

pot. All pots were incubated in a greenhouse (16‐hr day [25°C]:8‐hr

night [20°C]) for 90 days. Pots were given sterile water three times

per week to maintain their soil moisture at ~15%. Pots assigned to

the different treatments were arranged randomly and rotated regularly

throughout the incubation period.

At the designated time points, the soils in pots without any plants

were collected from a depth of 3–15 cm. For pots with plants, we

adopted destructive sampling; after plant roots with soil attached

were carefully removed, the remaining soil without roots was mixed

and collected. Although the rhizosphere consists of the soil most

affected by plants, the volume collected here was much too small.

Therefore, we focused on the soil microbial responses to the impact

of plant growth at a larger scale. At each time point, four replicates

were sampled in the control and bacteria treatments, whereas six rep-

lications (two biological replicates × three legume species) were gener-

ated in the plant and BP treatments by pooling three of six replicate

pots for each of the three legume species. In this way, 20 soil samples

were generated at each time point for the treatments of control

(n = 4), bacteria (n = 4), plant (n = 6), and BP (n = 6). In total, 100 soil

samples were obtained from the five sampling time points for all treat-

ment, and 10 g of each sample was stored at −80°C for microbial

analysis.
2.4 | Soil ecosystem multifunctionality analysis

We used the soil samples taken at the 90‐day time point to analyze

soil ecosystem multifunctionality because of the relatively large impact

the plants had on the environment surrounding their roots by this

time. We assessed six ecosystem functions related to pollutant degra-

dation (polyphenol oxidase) and the cycling of carbon (dehydroge-

nase), nitrogen (urease and available nitrogen [AN]), phosphorus
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(available phosphorus [AP]), and potassium (available potassium [AK]).

These functions were chosen because they deliver some of the funda-

mental supporting and regulating ecosystem services (Bradford et al.,

2014; Delgado‐Baquerizo et al., 2016; Jing et al., 2015; Maestre

et al., 2012), particularly in contaminated soils. Activities of the

enzymes polyphenol oxidase (PPO), dehydrogenase (DHA), and urease

(UE) were assayed by the methods of Chen, Wang, Wang, and Huang

(2004), Singh and Singh (2005), and Li et al. (2009), respectively. Phys-

icochemical properties of the soils, including their pH, organic matter,

total nitrogen, AN, AP, and AK, were all measured using standard soil

testing procedures (Bao, 2000). Because of the disparate soil enzyme

activities and physicochemical properties, we divided soil ecosystem

multifunctionality into two groups: multienzyme activities (PPO,

DHA, and UE) and multinutrient levels (AN, AK, and AP). We then

quantified the multifunctionality index for each soil sample using the

first axis of a principal component analysis (this explained 80% of

the variation in these two groups of variables) according to Laforest‐

Lapointe, Paquette, Messier, and Kembel (2017).
2.5 | DNA extraction, polymerase chain reaction
amplification, and 16S rRNA gene sequencing

Genomic DNA was extracted from the soil samples with the MP

FastDNA SPIN Kit for soils (MP Biomedicals, Solon, OH) according

to the manufacturer's instructions. The V4–V5 region of the 16S rRNA

gene was amplified by using the primer pair 515F/907R (Jiao, Liu,

et al., 2016). These amplified polymerase chain reaction products were

sequenced on the Illumina HiSeq 2500 platform (Illumina Inc., San

Diego, CA) using 250‐bp paired‐end reads. The acquired sequences

were filtered for quality according to Caporaso et al. (2011), and any

chimeric sequences were removed with the USEARCH tool on the

basis of the UCHIME algorithm (Edgar, Haas, Clemente, Quince, &

Knight, 2011). Then, the remaining sequences were grouped according

to their taxonomy and assigned to operational taxonomic units (OTUs)

at a 3% dissimilarity level, by using the UPARSE pipeline (Edgar et al.,

2011). OTUs with less than two sequences were removed, and repre-

sentative sequences of OTUs were taxonomically assigned using the

RDP classifier (Caporaso et al., 2011).
2.6 | Data analyses

To characterize the temporal response strategies of particular soil bac-

teria, the obtained OTUs were grouped according to how they

responded to the four treatments. For each treatment, changes in rel-

ative abundance were interpreted as a measure of this response and

used to categorize the OTUs. To do this, pairwise comparisons (using

t tests) of the relative abundance of each OTU in the control versus

other treatment samples were performed at each sampling time point.

Based on this exercise, (a) the OTUs that did not significantly differ in

their relative abundance were categorized as tolerant OTUs, (b) those

that had a significantly lower abundance in the noncontrol treatment
samples were deemed sensitive OTUs, and (c) those that had higher

abundance were categorized as opportunist OTUs.

Prior to the data analysis, each sample was rarefied to correct for

sampling effort using a subsample with a minimum of 23,378

sequences (according to the sample size). To assess microbial diversity

and abundance, we evaluated the α‐diversity of OTU richness and the

Shannon–Wiener index, as well as the changes in community compo-

sition using the Bray–Curtis distance between the samples. A principal

coordinate analysis was performed on the distance matrices to visual-

ize the relationships among the soil samples. A similarity analysis

(ANOSIM) and a permutational multivariate analysis of variance (ADO-

NIS) were performed to determine significant differences among the

sample classifications (i.e., four treatments). To quantify the relative

importance of α‐diversity of different response groups on soil

multifunctionality, we adopted a multiple regression model and a var-

iance decomposition analysis with the lm and calc.relimp functions in

the ‘relaimpo’ package, respectively.

Network analysis was performed to identify the bacterial co‐

occurrence patterns. Three networks were constructed on the basis

of the correlation analysis corresponding to the bacteria, plant, and

BP treatments. Spearman's correlation between two OTUs was esti-

mated. Robust correlations with Spearman's correlation coefficients

> 0.8 (strong) and false discovery rate‐corrected P values < 0.01 (sig-

nificant) were identified to form the networks, in which each node

represents one OTU and each edge represents a strong and significant

correlation between two nodes. Network‐level topological features

were estimated for a set of metrics: average path length, average

degree, graph density, clustering coefficient, and modularity. In addi-

tion, four node‐level topological features were calculated for each

node, namely, degree, betweenness, closeness, and eigenvector cen-

trality. These topological features provide indicators for evaluating

the roles of nodes in a network (Eiler, Heinrich, & Bertilsson, 2012;

Steele et al., 2011). High values of these topological features indicate

the core and central position of a node in the network, whereas low

values indicate a peripheral position (Jiao, Chen, & Wei, 2017; Ma

et al., 2016). For example, degree represents the number of direct con-

nections for an individual node (Greenblum, Turnbaugh, & Borenstein,

2012), and betweenness centrality reflects the potential influence of a

particular node on the connections of other nodes (Greenblum et al.,

2012). Networks were visualized using the interactive Gephi platform

(Bastian, Heymann, & Jacomy, 2009; Newman, 2003, 2006).

All statistical analyses were conducted using R v3.2.2 (http://

www.r‐project.org/) unless otherwise stated.
3 | RESULTS

3.1 | General characteristics of the bacterial dataset

After quality filtering and the removal of chimeric sequences, the

Illumina V4–V5‐derived 16S rRNA dataset contained 3,381,179

high‐quality sequences, which clustered into 4,173 OTUs on the basis

of a 97% similarity cutoff. Because the soil bacterial communities were

http://www.r-project.org
http://www.r-project.org
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similar among the three legumes (P > 0.1; estimated via ANOSIM and

ADONIS analysis), the subsequent analysis considered the influence of

plant growth by taking the three legume species as a whole rather

than individually.
3.2 | Temporal effects of introduced microbial
consortium and legume plants on bacterial
communities

First, we determined the OTU richness and diversity of the sequencing

data for each time point (Figure S2). For treatments without plants

(control and bacteria), the overall α‐diversity increased remarkably in

the early phase (0–30 days) of the experiment but reached a plateau

in its later phase (30–90 days). Compared with microcosms treated
FIGURE 1 General patterns of bacterial β‐diversity in response to bioti
similarities between the control versus bacteria, plant, and bacterial + plan
ordinary least squares models. A principal coordinate analysis based on th
versus bacteria, plant, and bacterial + plant treatments (b, d, and f); 80% co
[Colour figure can be viewed at wileyonlinelibrary.com]
without plants, the plant growth treatments (plant and BP) showed a

higher OTU richness from 60 days onward. At 90 days, microcosms

grown with alfalfa showed the highest α‐diversity, followed by vetch

and robinia (Figure S3). Overall, introducing the microbial consortium

did not significantly change the α‐diversity of soil bacteria throughout

the incubation period (P > 0.05).

For the compositional β‐diversity, we estimated the temporal var-

iation of community similarity between each treatment and control

microcosms via the fitted quadratic ordinary least squares models

(Figure 1a,c,e). The similarities between the bacteria treatment and

control microcosms increased significantly during the incubation

period, indicating a recovery of native bacterial communities. By con-

trast, the similarities between plant treatment and control microcosms

significantly decreased as the incubation progressed, indicating an

increasing impact of plant growth. Interestingly, the similarities
c introductions in soil microcosms. Temporal variation of community
t treatments (a, c, and e), as estimated by the fitted quadratic
e Bray–Curtis dissimilarity among the samples between the control
nfidence ellipses are shown around the samples from each time point

http://wileyonlinelibrary.com
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between the BP treatment and control microcosms first increased but

then decreased, thus indicating a complex interaction effect of the

introduced legume plants and microbial consortium on native bacterial

communities. Furthermore, the principal coordinate analysis (Figure 1

b,d,f) based on the Bray–Curtis dissimilarity revealed that the confi-

dence ellipses of the control and treatment samples gradually shrank,

enlarged, and showed alternate trends for bacteria, plant, and BP,

respectively. Additionally, differences in bacterial composition

between control and treatments at each time point, as tested with

ANOSIM and ADONIS, are presented in Tables S2 and S3. For the

bacteria treatment, significant differences in the bacterial community

were observed in the early phase (10–30 days), which gradually

decreased along the incubation period; the differences were no longer

significant in the later phase (60–90 days). For the plant and BP treat-

ments, the bacterial community did not different significantly in the

early phase (20–30 days), except for at 10 days, which may have been

related to the disturbance generated by sowing the plants. By con-

trast, during the later phase (60–90 days), significant differences were

observed, thought these were more pronounced at Day 60 than at

Day 90.

Moreover, we estimated the temporal dynamics of the dominant

bacterial phyla in control samples (Figure S4A). The relative abundance

of Proteobacteria deceased with increasing incubation period,

whereas that of Actinobacteria increased. Then the influence of differ-

ent treatments was explored by taking the absolute values of relative

phylum abundance between the control and treatment samples
FIGURE 2 Temporal dynamics of specific bacterial taxa with distinct re
relative abundance of bacterial groups and the incubation period were det
viewed at wileyonlinelibrary.com]
(Figure S4B). For the bacteria treatment, the differences in the domi-

nant Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria

deceased with increasing incubation period. For the plant and BP

treatments, the differences in most of the dominant phyla showed

an increasing trend over the incubation period. These results con-

firmed the above observations in Figure 1.

The changes in bacterial community composition were coupled to

an extensive turnover of OTUs. The individual members exhibited dis-

tinct response strategies to the different treatments (Figure 2; Table

S4). For the bacteria treatment, the relative abundance of tolerant

OTUs gradually increased over the incubation period, whereas oppor-

tunist and sensitive OTUs decreased. By contrast, the reverse trends

were observed for the two treatments with plants. Moreover, differ-

ent response OTUs to the BP treatment displayed alternate trends

during the incubation period. The relative abundance of opportunist

and sensitive OTUs first decreased and then increased, whereas toler-

ant OTUs first increased and then decreased. In addition, the final rel-

ative abundances of sensitive and tolerant OTUs were higher or lower

than the initial levels, respectively, which indicated a stronger effect

on them from the legume plants than from the microbial consortium

introduced. Furthermore, we estimated the influence of the different

treatments on the distributions of each response group (Figure S5).

The BP‐opportunist and sensitive OTUs had the highest relative abun-

dances, yet the BP‐tolerant OTUs had the lowest. There was no signif-

icant difference between bacteria and plant treatments, except for

sensitive OTUs in the latter with a higher relative abundance.
sponse strategies to biotic introductions. Relationships between the
ermined by linear regression analysis (P < 0.05) [Colour figure can be

http://wileyonlinelibrary.com


858 SHUO ET AL.
Additionally, we explored the temporal dynamics of the dominant bac-

terial genera in different treatment samples (Figure S6). The relative

abundances of Janthinobacterium and Lysobacter decreased over the

incubation period in all treatments. By contrast, Kaistobacter and

Nocardioides increased, with lower or higher abundances in plant

growth treatments in the later phase (90 days), respectively. Interest-

ingly, Pseudoxanthomonas, one of the major members in the intro-

duced microbial consortium, had a higher relative abundance in the

bacteria and BP treatments in the early phase (10–30 days), which

decreased over the incubation period.
3.3 | Bacterial co‐occurrence patterns in different
treatment microcosms

The metacommunity co‐occurrence networks were constructed for

different treatment microcosms on the basis of correlations

(Figure 3). Comparing the network‐level topological features revealed

substantially higher average degree and clustering coefficient and

lower average path length in the plant and BP treatment networks

than in the bacteria treatment network. This indicates that the plant

growth networks were more connected and had closer relationships

than does the microbial consortium network (Table S5). Opportunist

OTUs were located in the core and central positions of the plant and

BP treatment networks and exhibited extremely strong influence on

other nodes (Figure 3). To confirm this observation, we examined four

unique node‐level topological features of different response OTUs,

that is, the degree, betweenness, closeness, and eigenvector centrality

(Figure 4). Although the values of these node‐level topological fea-

tures were similar among the different response groups in the bacteria

network, they were significantly higher (P < 0.05) for opportunist
FIGURE 3 Metacommunity co‐occurrence networks of bacterial taxa fr
analysis. Networks are colored for the categories of distinct response stra
significant (false discovery rate‐corrected P value < 0.01) correlation. The
operational taxonomic units; the thickness of a connection between two no
coefficient. The external associations (black numbers) among each subcomm
black below each node represent the inner associations of each subcomm
according to the categories [Colour figure can be viewed at wileyonlinelib
OTUs than other nodes in the plant and BP networks. This suggests

that compared with other response groups, opportunist OTUs were

more often located in central positions within the plant and BP treat-

ment networks, and less so in the bacteria treatment network.

Given this extremely strong influence of opportunist OTUs, we

visualized their distribution at the genus level (Figure S7). Opportunist

OTUs comprised diverse taxa, including Proteobacteria,

Actinobacteria, and Firmicutes. Although there were no significant dif-

ferences in bacterial community structure between the plant and BP

treatments, the composition of opportunist OTUs did show slight dif-

ferences. In the plant treatment, opportunist OTUs were mainly classi-

fied into the genera Steroidobacter, Lysobacter, Iamia,

Promicromonospora, Nitrospira, and Thiobacillus (Figure S7A), whereas

in the BP treatment, Pseudoxanthomonas, Hydrogenophaga,

Achromobacter, Stenotrophomonas, and Iamia were predominant (Fig-

ure S7B).
3.4 | Main bacterial drivers of soil ecosystem
multifunctionality

To explore the influence of plant growth on soil ecosystem

multifunctionality, we estimated changes in soil enzyme activities

and nutrient levels induced by plant growth (Figure S8). Soil DHA

and total nitrogen were substantially increased by plant growth,

whereas AN, AK, and AP were reduced. We also examined the associ-

ations between specific bacterial populations and soil enzyme activi-

ties and nutrient levels (Figure 5). Soil PPO and UE were positively

associated with the relative abundance of Arenimonas and

Thermomonas. Soil DHA and total nitrogen were positively associated

with the relative abundance of Iamia and Aeromicrobium. Soil AN, AK,
om soil microcosms with biotic introductions based on a correlation
tegies. A connection indicates a strong (Spearman's ρ > 0.8) and
size of each node is proportional to the relative abundance of the
des (i.e., an edge) is proportional to the value of Spearman's correlation
unity are displayed on the bottom right of each graph. The numbers in
unity, and the numbers of nodes in each subcommunity are coloured
rary.com]
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FIGURE 4 Unique node‐level topological features of specific bacterial taxa with different response strategies to biotic introductions in the co‐
occurrence networks. Significance was estimated for differences in these features among different response strategies, on the basis of multiple
comparisons with Kruskal–Wallis. n.s., not statistically significant (P > 0.05); bars that do not share a letter are significantly different (P < 0.05)

[Colour figure can be viewed at wileyonlinelibrary.com]
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and AP were all positively associated with the relative abundance of

Janthinobacterium, Kaistobacter, Ramlibacter, and Cupriavidus.

Given the substantial influence of plant growth we detected in

the experiment, we then uncovered the main bacterial drivers of soil

ecosystem multifunctionality in the plant growth treatments. Specif-

ically, we performed a multivariate regression analysis that included

OTU richness, Shannon diversity, and the relative abundance of dif-

ferent response OTUs, to quantify their respective contribution to

multienzyme or multinutrient functions in soil (Table 1). The α‐diver-

sity of tolerant OTUs contributed most towards explaining the varia-

tion in soil multienzyme activities; likewise, the diversity and relative

abundance of opportunist and sensitive OTUs contributed most to

the soil multinutrient levels. Furthermore, we estimated the correla-

tions of compositional β‐diversity with the dissimilarities of soil

multifunctionality based on their Euclidean distances. There were

no significant correlations between compositional β‐diversity and

the dissimilarities of soil multienzyme index (P > 0.1). Nonetheless,

the dissimilarities of soil multinutrient index were significantly corre-

lated with the compositional β‐diversity of opportunist and sensitive

OTUs, rather than with that of tolerant OTUs. This result indicates

that the compositional β‐diversity of opportunist and sensitive OTUs

made important contributions to soil multinutrient functions

(Figure 6).
4 | DISCUSSION

Land degradation is a global problem that is leads to substantial

changes in soil biodiversity and ecosystem functions and services

(Caravaca, Lozano, Rodriguez‐Caballero, & Roldan, 2017; Delgado‐

Baquerizo et al., 2016). Revealing the temporal responses of particular

bacterial groups to soil perturbations and their contributions to eco-

system multifunctionality is pivotal to understand the maintenance

of microbial diversity and microbe‐driven ecosystem processes

(Delgado‐Baquerizo et al., 2017). In this study, we found that native

bacterial communities exhibited stronger resilience to the introduced

microbial consortium than to the legume plants growing in a

multicontaminated agricultural soil. In particular, the temporal turn-

over of particular bacterial taxa with different response strategies

influenced the community assembly and ecosystem multifunctionality

of the experimentally contaminated soil. These findings suggest that

developing policies to protect microbial diversity with different

response strategies is crucial for the preservation of soil ecosystem

multifunctionality under global environmental contamination

scenarios.

Counteracting human‐induced transformation and degradation of

natural ecosystems necessitates active ecological restoration and

intervention (Wardle & Peltzer, 2007). Aboveground–belowground

http://wileyonlinelibrary.com


FIGURE 5 Influence of plant growth on the ecosystem
multifunctionality of contaminated soil, estimated by canonical
correspondence analysis. In total, 80% confidence ellipses are shown
around the samples with and without plant growth. Green triangles
represent samples with plant growth, and blue circles represent
samples without plant growth. Arrows represent a different
ecosystem multifunctionality. Only genera with a relative abundance
higher than 0.5% are shown. OM, organic matter; TN, total nitrogen;
AN, available nitrogen; AP, available phosphorus; AK, available
potassium; PPO, polyphenol oxidase; DHA, dehydrogenase; UE,
urease [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Variation explained by the variables of different response
groups of soil bacteria to legume plant growth in the regression
models of soil ecosystem multifunctionality

Group Variable

Soil ecosystem multifunctionality (%)

Multienzyme Multinutrient

Tolerant Shannon 14.80
Richness 25.52
Relative abundance

Opportunist Shannon 19.06
Richness 14.10
Relative abundance 10.25

Sensitive Shannon
Richness 9.08
Relative abundance 9.49

Total 40.32 61.99

Note. NA: not statistically significant (P > 0.05).
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linkages have important implications for restoration ecology in that

they play vital roles in driving ecosystem structure and functioning,

including the cycling of carbon and nutrients (Kardol & Wardle,

2010). Microbial ecosystems can exhibit remarkable resistance and

resilience in response to various environmental alterations, such as

global climate change (Delgado‐Baquerizo et al., 2017; Szekely &

Langenheder, 2017), soil contamination (Jiao, Chen, et al., 2016; Jiao,

Liu, et al., 2016), and pH fluctuation (Feng et al., 2017). In our
experiment, we found that soil microcosms were influenced by intro-

ducing the contaminant‐degrading microbial consortium in the early

phase, but they quickly recovered their compositional β‐diversity. This

might be explained by the priority effect of native bacterial members,

which is regarded as an obstacle hindering the colonization by newly

introduced species (Vannette & Fukami, 2014). In addition, the intro-

duced microbial consortium was obtained via an enrichment culture

of an artificially contaminated soil, thus likely providing tightly regu-

lated and less complex conditions in comparison with what occurs in

the field (Jiao, Chen, et al., 2016; Jiao, Liu, et al., 2016). In this case,

the microbial consortium may not have been well adapted to the com-

plex soil environment and therefore was less competitive than the

native bacterial community.

Previous studies have found that colonization by newly added

species was restricted to just a small fraction of available niche space,

possibly due to a low amount of available resources or intense compe-

tition with the resident species in the community (Calderon et al.,

2017; Nemergut et al., 2013). Under the latter scenario, there is evi-

dence that interspecific interactions could impede the ability of new

species to exploit the niches available to them during the colonization

process (Calderon et al., 2017; Martorell & Freckleton, 2014). This hin-

drance, however, may be strengthened by the temporal responses of

particular bacterial taxa with different resource‐use strategies. For

example, after introducing the microbial consortium, we found the rel-

ative abundance of tolerant bacterial taxa gradually increased,

whereas a decrease occurred in sensitive bacterial taxa. These tempo-

ral response processes indicated a high resistance and resilience of soil

microcosms towards counteracting the colonization of new, poten-

tially invasive species. Microorganisms can adopt distinct response

strategies to perturbations, which could be related to their phyloge-

netically conserved ecological traits (Placella et al., 2012; Szekely &

Langenheder, 2017). Although the compositional β‐diversity did

recover, some bacterial taxa colonization did ensue over the incuba-

tion period from introducing the consortium. This may have resulted

from niche sharing between the new invaders and resident species.

The resource‐based niche theory associates the establishment of

potential invaders with local resource availabilities and the ecological

traits of resident species (Tilman, 2004). These results also provide

evidence for a habitat filtering process, that is, the nonrandom estab-

lishment and colonization of individuals with respect to abiotic local

characteristics, and this would suggest that the microbial communities

were assembled via deterministic rather than stochastic processes

(Calderon et al., 2017; Placella et al., 2012).

In contrast to the treatment with the introduced microbial consor-

tium, we detected cumulative effects of legume plant growth during

the experiment. In particular, we observed that gradual increases in

the relative abundances of those bacterial taxa significantly influenced

by plant growth, that is, opportunist and sensitive OTUs. In this con-

text, the former were also defined as bacterial taxa enriched by plants;

likewise, the sensitive ones were the bacterial taxa depleted by plants.

Plant roots are known to exert a selective effect on the soil microbial

community (Bulgarelli et al., 2012; Mendes et al., 2011), which could

potentially promote their own growth and nutrition (Mendes,

http://wileyonlinelibrary.com


FIGURE 6 Correlations between compositional β‐diversity of
different response groups of soil bacteria and dissimilarities of soil
multinutrient index based on Euclidean distance, estimated by Mantel
test [Colour figure can be viewed at wileyonlinelibrary.com]
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Kuramae, Navarrete, van Veen, & Tsai, 2014). Plants may also select a

subset of microorganisms to interact at different stages of vegetative

growth (Chaparro, Badri, & Vivanco, 2014). These potentially benefi-

cial microorganisms that support nutrient acquisition for promoting

plant growth are typically called plant growth‐promoting rhizobacteria.

Their occurrence may help explain why the plant‐enriched bacterial

taxa were located in the core and central positions of the networks

and also strongly influenced the other nodes. The plant‐enriched bac-

terial taxa might benefit from abundant nutrients such as root exu-

dates and mucilage, thus enabling them to occupy the dominant

ecological niches in the interaction network (Lange et al., 2015). Previ-

ous studies have demonstrated that plants' growth could increase soil

network complexity and the coexistence of soil organisms via
strengthening the efficiency of carbon uptake (Morrien et al., 2017;

Shi et al., 2016; Stegen, Lin, Konopka, & Fredrickson, 2012).

Interestingly, the temporal responses of soil microcosms to the BP

treatment were complicated. The β‐diversity first increased and then

decreased over the incubation period, and this was accompanied by

alternating trends for different response OTUs. These complex

responses might be linked to interactions between the priority effect

of native bacterial members and the selective effect imposed by plant

growth; the former mainly functions in the early phase, and the latter

play roles in the later phase of incubation. Because the bacterial com-

munity structure was similar between the plant and BP treatments,

introducing new species only might not influence the selective effect

of plant growth on soil microcosms. Altogether, given their vital roles

in promoting plant growth (Mendes et al., 2014), our results provide

a new perspective: Plant‐enriched bacteria may also act as keystone

species to drive the assembly of the interaction web in soil.

Understanding the factors controlling how ecosystem

multifunctionality is linked to plant production and nutrient cycling is

critical to preserve and manage natural and human‐dominated ecosys-

tems (Delgado‐Baquerizo et al., 2016). Recent research provides evi-

dence that terrestrial ecosystem multifunctionality is driven by both

plant and microbial diversity (Cardinale et al., 2011; Delgado‐

Baquerizo et al., 2016; Lefcheck et al., 2015; Maestre et al., 2012).

In the present study, we assessed six ecosystem functions and partic-

ularly disentangled the main drivers behind soil ecosystem

multifunctionality. We found that the diversity of tolerant OTUs con-

tributed most to multienzyme functioning. Soil enzymes are involved

in nutrient cycling, and almost all ecological reactions in soil are depen-

dent on enzyme catalysis. DHA and PPO are two oxidoreductases that

catalyze important metabolic processes, including the decomposition

of organic inputs and the detoxification of xenobiotics (Wu et al.,

2017; Xu et al., 2014). Urease hydrolyzes urea to release ammonium

into soil (Nannipieri, Ceccanti, Cervelli, & Sequi, 1978). During the 3‐

month incubation period, most bacterial members in the microcosms

could adapt to the contaminated conditions through their rapid

growth; perhaps they also obtained an ability to degrade the organic

contaminants via rapid evolutionary adaptation. In addition, urease

activity was mainly functioned by the indigenous bacterial taxa

because urea inherently existed in the original soil. Therefore, the

plant‐tolerant taxa, which had the greatest relative abundance in the

community, largely determined the multienzyme functioning.

With regard to multinutrient functioning, plant‐sensitive taxa

were found to be the main drivers. Additionally, soil multinutrient

functioning was significantly correlated with the compositional β‐

diversity of plant‐sensitive taxa, but not with tolerant OTUs. Plant

growth could considerably modify soil microbial communities and

physiochemical properties, including nutrient factors, via the release

of exudates and mucilage from roots (Badri & Vivanco, 2009; Shi

et al., 2011). Thus, it would not be surprising to find that plant‐

associated taxa were somehow related to soil nutrient cycling. In par-

ticular, legumes used in the present work accumulated the total N in

soils, while they depleted other available nutrients. This dynamic

may be explained in two ways: (a) the legumes form nodules via

http://wileyonlinelibrary.com
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symbiosis with N2‐fixing rhizobia, which represent an important input

for the nitrogen cycle (Vitkova, Tonika, & Mullerova, 2015); (b) the

roots need to uptake available nutrients from soils for plant growth.

These results suggested that plant‐associated taxa were not only

located in the core and central positions of the networks, but they also

drove soil ecosystem multifunctionality, mainly by contributing to

nutrient cycling. Prior work has indicated that soil microbial diversity

is positively related to the multifunctionality in several terrestrial eco-

systems (Delgado‐Baquerizo et al., 2016; Jing et al., 2015). Our study

highlights that the respective response strategies of bacterial taxa are

an integral part of soil ecosystem multifunctionality. To the best of our

knowledge, the present study based on temporal microcosms is the

first demonstration of the roles of bacterial communities with distinct

response strategies in driving ecosystem multifunctionality in a

multicontaminated agricultural soil.
5 | CONCLUSIONS

We detected different response strategies of particular bacterial

groups to biotic introductions in temporal soil microcosms and quanti-

fied their respective contributions to alterations in ecosystem

multifunctionality. Native bacterial communities exhibited strong resil-

ience to the introduced microbial consortium, accompanying the tem-

poral turnover of particular bacterial taxa with different response

strategies. Different response groups to plant growth determined

the soil multifunctionality. By using temporal microcosms, our study

provides a new perspective in disentangling the main drivers of eco-

system multifunctionality by quantitatively partitioning the response

strategies of soil bacterial communities. It is pivotal to develop

approaches and policies to protect soil microbial diversity with differ-

ent response strategies from global environmental drivers, so that the

overall multifunctionality of terrestrial ecosystems is better preserved

for future generations.
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