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Classification algorithm selection is an important issue in many disciplines. Since it normally

involves more than one criterion, the task of algorithm selection can be modeled as multiple

criteria decision making (MCDM) problems. Different MCDM methods evaluate classifiers

from different aspects and thus they may produce divergent rankings of classifiers. The goal

of this paper is to propose an approach to resolve disagreements among MCDM methods

based on Spearman’s rank correlation coefficient. Five MCDM methods are examined using

17 classification algorithms and 10 performance criteria over 11 public-domain binary

classification datasets in the experimental study. The rankings of classifiers are quite

different at first. After applying the proposed approach, the differences among MCDM

rankings are largely reduced. The experimental results prove that the proposed approach

can resolve conflicting MCDM rankings and reach an agreement among different MCDM

methods.

Keywords: Multi-criteria decision making (MCDM); classification; Spearman’s rank corre-

lation coefficient; TOPSIS; ELECTRE; grey relational analysis; VIKOR; PROMETHEE.

1. Introduction

As one of the most important tasks in data mining and knowledge discovery

(DMKD),31 classification has been extensively studied and various algorithms have

been developed over the years. Classification algorithms evaluation and selection is

an active research area in the fields of machine learning, statistics, computer sci-

ence, and DMKD. Rice37 formalized algorithm selection as abstract models with the

problem space, the feature space, the criteria space, the algorithm space, and the

performance measures. Nakhaeizadeh and Schnabl26 suggested multi-criteria-based

metrics to compare classification algorithms. Smith-Miles42 treated the algorithm

*Authors contributed equally to this work and are alphabetically ordered by their last names.
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selection problem as a learning task and presented a unified framework that

combines the cross-disciplinary developments in the algorithm selection problem.

Peng et al.35 applied multiple criteria decision making (MCDM) methods to

rank classification algorithms and validated the approaches using software

defect datasets.

The evaluation of classification algorithms normally involves two or more con-

flicting criteria, such as accuracy, Type-I error, Type-II error, AUC, and compu-

tation time. Thus it can be modeled as a MCDM problem.41 Many MCDM methods

have been developed and applied in a wide variety of applications.7,8,14,19,20,23,32,48

MCDM methods rank alternatives using different approaches. Applying various

MCDM methods to a sorting problem is beneficial because the ranking agreed by

several MCDM methods is more trustful than one generated by single MCDM

method. Though some studies shown that MCDMmethods provide similar rankings

of alternatives,33,35 there are situations where different MCDM methods produce

conflicting rankings. How to reconcile these differences becomes an important issue

and has not been fully investigated.34

This paper combines MCDM methods with Spearman’s rank correlation coeffi-

cient to rank classification algorithms. This approach first uses several MCDM

methods to rank classification algorithms and then applies Spearman’s rank cor-

relation coefficient to resolve differences among MCDM methods. Five MCDM

methods, including TOPSIS, ELECTRE III, grey relational analysis, VIKOR,

and PROMETHEE II are implemented in this research. An experimental study,

which chooses a wide selection of classifiers and performance measures, is conducted

to validate the proposed approach over 11 public-domain binary classification

datasets.

The rest of this paper is organized as follows. In Sec. 2, the proposed approach,

including the selected MCDM methods and Spearman’s rank correlation coefficient,

is described. Section 3 presents the datasets, classification algorithms, performance

measures, and the design of the experimental study. The results are discussed in

Sec. 4. The final section summarizes the papers.

2. Research Methodology

Many MCDM methods have been developed to rank alternatives in different ways.

While the rankings of alternatives provided by MCDM methods may in agreement

sometimes, there are situations where different MCDM methods generate very

different rankings. This work proposes to use Spearman’s rank correlation coeffi-

cient to generate the final ranking that resolves or reduces differences among

MCDM rankings. The proposed approach uses several MCDM methods to rank

classifiers first; then applies Spearman’s rank correlation coefficient to determine

weights for MCDM methods to get secondary rankings of classifiers. This section

describes the five MCDM methods used in the study and explains the details of the

proposed approach.
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2.1. MCDM methods

Ranking classification algorithms normally need to examine multiple criteria, such

as accuracy, AUC, F-measure, and kappa statistic. Therefore, the task of algorithm

selection can be modeled as MCDM problems. This section gives an overview of

the five selected MCDM methods (i.e., TOPSIS, ELECTRE III, grey relational

analysis, VIKOR, and PROMETHEE II).

Technique for Order Preference by Similarity

to Ideal Solution (TOPSIS)

Hwang and Yoon15 proposed the technique for order preference by similarity to ideal

solution (TOPSIS) method to rank alternatives over multiple criteria. It finds the

best alternatives by minimizing the distance to the ideal solution and maximizing

the distance to the nadir or negative-ideal solution.27

A number of extensions and variations of TOPSIS have been developed over the

years. The following TOPSIS procedure adopted from Opricovic and Tzeng29 and

Olson27 is used in the empirical study:

Step 1. Calculate the normalized decision matrix. The normalized value rij is

calculated as

rij ¼ xij

ffiffiffiffiffiffiffiXJ
j¼1

vuut,
x 2
ij ; j ¼ 1; . . . ; J ; i ¼ 1; . . . ; n;

where J and n denote the number of alternatives and the number of criteria,

respectively. For alternative Aj, the performance measure of the ith criterion Ci is

represented by xij .

Step 2. Develop a set of weights wi for each criterion and calculate the

weighted normalized decision matrix. The weighted normalized value vij is

calculated as

vij ¼ wixij ; j ¼ 1; . . . ; J ; i ¼ 1; . . . ; n;

where wi is the weight of the ith criterion, and
Pn

i¼1 wi ¼ 1.

Step 3. Find the ideal alternative solution Sþ, which is calculated as

Sþ ¼ fvþ
1 ; . . . ; v

þ
n g ¼ max

j
vij ji 2 I 0

� �
; min

j
vij ji 2 I 00

� �� �
;

where I 0 is associated with benefit criteria and I 00 is associated with cost criteria.

Step 4. Find the negative-ideal alternative solution S�, which is calculated as

S� ¼ fv�
1 ; . . . ; v

�
n g ¼ min

j
vij ji 2 I 0

� �
; max

j
vij ji 2 I 00

� �� �
:
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Step 5. Calculate the separation measures, using the n-dimensional Euclidean

distance. The separation of each alternative from the ideal solution is calculated as

Dþ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðvij � vþ
i Þ2

s
; j ¼ 1; . . . ; J :

The separation of each alternative from the negative-ideal solution is calculated as

D�
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðvij � v�
i Þ2

s
; j ¼ 1; . . . ; J :

Step 6. Calculate a ratio Rþ
j that measures the relative closeness to the ideal

solution and is calculated as

Rþ
j ¼ D�

j =ðDþ
j þD�

j Þ; j ¼ 1; . . . ; J :

Step 7. Rank alternatives by maximizing the ratio Rþ
j .

ELimination and Choice Expressing REality (ELECTRE)

ELECTRE stands for ELimination Et Choix Traduisant la REalit�e (ELimination

and Choice Expressing the REality) and was first proposed by Roy38 to choose the

best alternative from a collection of alternatives. Over the last four decades, a

family of ELECTRE methods has been developed, including ELECTRE I, ELEC-

TRE II, ELECTRE III, ELECTRE IV, ELECTRE IS, and ELECTRE TRI.

There are two main steps of ELECTRE methods: the first step is the construc-

tion of one or several outranking relations; the second step is an exploitation pro-

cedure that identifies the best compromise alternative based on the outranking

relation obtained in the first step.11 ELECTRE III is chosen in this paper because

it is appropriate for the sorting problem. The procedure can be summarized as

follows24,39,40:

Step 1. Define a concordance and discordance index set for each pair of alternatives

Aj and Ak, j; k ¼ 1; . . . ;m; i 6¼ k.

Step 2. Add all the indices of an alternative to get its global concordance index Cki.

Step 3. Define an outranking credibility degree �sðAi;AkÞ by combining the dis-

cordance indices and the global concordance index.

Step 4. Define two outranking relations using descending and ascending distilla-

tion. Descending distillation selects the best alternative first and the worst

alternative last. Ascending distillation selects the worst alternative first and the best

alternative last.

Step 5. Alternatives are ranked based on ascending and descending distillation

processes.
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Grey Relational Analysis (GRA)

Grey relational analysis (GRA) is a part of grey theory, which has been proposed to

handle imprecise and incomplete information in grey systems,5 and has been proven

to be suitable for selecting a best alternative. The main procedure of GRA includes

generating the grey relation, defining the reference sequence, and calculating

the grey relational coefficient and grey relational grade (Kuo et al., 2008). The first

step normalizes performance values for every alternative to get a comparability

sequence. The second step defines an ideal target sequence. The third step compares

the comparability sequences with the ideal sequence and the last step calculates the

grey relational grade to rank alternatives. This study adopts the procedure provided

by Kuo et al.22:

Step 1. Generate the grey relation:

Suppose there are m alternatives and n attributes, the ith alternative is defined

as Yi ¼ fyi1; yi2; . . . ; ying. yij is the performance value of attribute j of alternative i.

Using one of the following three equations, the values of Yi can be translated into

the comparability sequence Xi ¼ fxi1; xi2; . . . ; xing:

xij ¼
yij �Minfyij ; i ¼ 1; 2; . . . ;mg

Maxfyij ; i ¼ 1; 2; . . . ;mg �Minfyij ; i ¼ 1; 2; . . . ;mg
for i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; ð2:1Þ

xij ¼
Maxfyij ; i ¼ 1; 2; . . . ;mg � yij

Maxfyij ; i ¼ 1; 2; . . . ;mg �Minfyij ; i ¼ 1; 2; . . . ;mg
for i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n; ð2:2Þ

xij ¼ 1� jyij � y �
j jyij �Minfyij ; i ¼ 1; 2; . . . ;mg

MaxfMaxfyij ; i ¼ 1; 2; . . . ;mg � y �
ij ; y

�
ij �Minfyij ; i ¼ 1; 2; . . . ;mgg

for i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n;

ð2:3Þ
where y �

j represents the desired value. Equation (2.1) is used for the-larger-the-

better attributes, Eq. (2.2) is used for the-smaller-the-better attributes, and

Eq. (2.3) is used for the-closer-the-desired-value-y �
j -the-better.

Step 2. Define the reference sequence:

The performance values calculated from Step 1 are ranged from 0 to 1. The ideal

target sequence, also called the reference sequence, is defined as

X0 ¼ fx01; x02; . . . ; x0ng ¼ f1; 1; . . . ; 1g. The objective of GRA is to find an alterna-

tive that has the closest comparability sequence to the reference sequence.

Step 3. Calculate the grey relational coefficient using the following equation:

�ðx0j ; xijÞ ¼
Vmin þ �Vmax

Vij þ �Vmax

; i ¼ 1; 2; . . . ;m; j ¼ 1; . . . ; n;
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where � is the distinguishing coefficient, � 2 ½0; 1�. The distinguishing coefficient

is used to expand or compress the range of the grey relational coefficient and it

is defined as 0.5 in this study. x0j is the reference sequence and defined

as ðx01; x01; . . . ; x0J Þ ¼ ð1; 1; . . . ; 1Þ. �ðx0j ; xijÞ is the grey relational coefficient

between x0j and xij, and

Vij ¼ jx0j � xij j;
Vmin ¼ MinfVij ; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; ng;
Vmax ¼ MaxfVij ; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; ng:

Step 4. Calculate the grey relational grade using the following equation:

�ðX0;XiÞ ¼
Xn
j¼1

wj�ðx0j ; xijÞ; for i ¼ 1; . . . ;m;

where wj is the weight of attribute j and
Pn

j¼1 wi ¼ 1. The grey relational grade

indicates the closeness between the ideal sequence and the comparability sequence.

An alternative with the highest grey relational grade is the best choice.

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

VIKOR was proposed by Opricovic28 and Opricovic and Tzeng30 for multicriteria

optimization of complex systems. The multicriteria ranking index, which is based

on the particular measure of closeness to the ideal alternative, is introduced

to rank alternatives in the presence of conflicting criteria.28,49 This paper uses

the following VIKOR algorithm provided by Opricovic and Tzeng29 in the

experiment:

Step 1. Determine the best f �i and the worst f �i values of all criterion functions,

i ¼ 1; 2; . . . ; n.

f �i ¼
max

j
fij ; for benefit criteria

min
j

fij ; for cost criteria

8<
:

9=
;; j ¼ 1; 2; . . . ; J ;

f �
i ¼

min
j

fij ; for benefit criteria

max
j

fij ; for cost criteria

8<
:

9=
;; j ¼ 1; 2; . . . ; J ;

where J is the number of alternatives, n is the number of criteria, and fij is the rating

of ith criterion function for alternative aj .

Step 2. Compute the values Sj and Rj ; j ¼ 1; 2; . . . ; J , by the relations

Sj ¼
Xn
i¼1

wiðf �i � fijÞ=ðf �i � f �i Þ;

Rj ¼ max
i

½wiðf �i � fijÞ=ðf �i � f �i Þ�;
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where wi is the weight of ith criteria, Sj and Rj are used to formulate ranking

measure.

Step 3. Compute the values Qj ; j ¼ 1; 2; . . . ; J , by the relations

Qj ¼ vðSj � S�Þ=ðS� � S�Þ þ ð1� vÞðRj � R�Þ=ðR� � R�Þ;

S� ¼ min
j

Sj ; S� ¼ max
j

Sj ;

R� ¼ min
j

Rj ; R� ¼ max
j

Rj ;

where the solution obtained by S� is with a maximum group utility, the solution

obtained by R� is with a minimum individual regret of the opponent, and v is the

weight of the strategy of the majority of criteria. The value of v is set to 0.5 in the

experiment.

Step 4. Rank the alternatives in decreasing order. There are three ranking lists:

S ;R, and Q.

Step 5. Propose the alternative a 0, which is ranked the best by Q, as a compromise

solution if the following two conditions are satisfied:

ðaÞ Qða00Þ �Qða 0Þ � 1=ðJ � 1Þ; (b) Alternative a 0 is ranked the best by S or/

and R.

If only the condition (b) is not satisfied, alternatives a 0 and a00 are proposed as

compromise solutions, where a00 is ranked the second by Q. If the condition (a) is not

satisfied, alternatives a 0; a00; . . . ; aM are proposed as compromise solutions, where

aM is ranked the Mth by Q and is determined by the relation QðaM Þ �Qða 0Þ <
1=ðJ � 1Þ for maximum M.

Preference Ranking Organisation METHod

for Enrichment of Evaluations (PROMETHEE)

Brans2 proposed the PROMETHEE I and PROMETHEE II in 1982. The

PROMETHEE methods use pairwise comparisons and outranking relationships

to choose the best alternatives. The final selection is based on the positive and

negative preference flows of each alternative. The positive preference flow indicates

how an alternative is outranking all the other alternatives and the negative pre-

ference flow indicates how an alternative is outranked by all the other alternatives.3

PROMETHEE I obtains partial ranking because it does not compare conflicting

actions.4 PROMETHEE II ranks alternatives according to the net flow which

equals to the balance of the positive and the negative preference flows.43 An

alternative with a higher net flow is better.3 Since the purpose of this paper is

to rank classification algorithms, PROMETHEE II is used in the experimental

study.
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The following PROMETHEE II procedure described by Brans and Mareschal3 is

used in the experimental study:

Step 1. Define aggregated preference indices.

Let a; b 2 A, and let:

�ða; bÞ ¼
Xk
j¼1

pjða; bÞwj ;

�ðb; aÞ ¼
Xk
j¼1

pjðb; aÞwj ;

8>>>>><
>>>>>:

where A is a finite set of possible alternatives fa1; a2; . . . ; ang, k represents the

number of evaluation criteria and wj is the weight of each criterion. Arbitrary

numbers for the weights can be assigned by the DM. The weights are then nor-

malized to ensure that
Pk

j¼1 wj ¼ 1. �ða; bÞ indicates how a is preferred to b and

�ðb; aÞ indicates how b is preferred to a. Pjða; bÞ and Pjðb; aÞ are the preference

functions for alternatives a and b.

Step 2. Calculate �ða; bÞ and �ðb; aÞ for each pair of alternatives of A.

Step 3. Define the positive and the negative outranking flow as follows:

The positive outranking flow:

�þðaÞ ¼ 1

n � 1

X
x2A

�ða; xÞ:

The positive outranking flow:

��ðaÞ ¼ 1

n � 1

X
x2A

�ðx; aÞ:

Step 4. Compute the net outranking flow for each alternative as follows:

�ðaÞ ¼ �þðaÞ � ��ðaÞ:
When �ðaÞ > 0; a is more outranking all the alternatives on all the evaluation

criteria. When �ðaÞ < 0; a is more outranked.

2.2. Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient measures the similarity between two sets of

rankings. The basic idea of the proposed approach is to assign a weight to each

MCDM method according to the similarities between the ranking it generated and

the rankings produced by other MCDM methods. A large value of Spearman’s rank

correlation coefficient indicates a good agreement between a MCDM method and

other MCDM methods.

The proposed approach is designed to handle conflicting MCDM rankings

through three steps. In the first step, a selection of MCDM methods is applied
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to rank classification algorithms. If there are strong disagreements among MCDM

methods, the different ranking scores generated by MCDM methods are used as

inputs for the second step.

The second step utilizes Spearman’s rank correlation coefficient to find the

weights for each MCDM method. Spearman’s rank correlation coefficient between

the kth and ith MCDM methods is calculated by the following equation:

�ki ¼ 1� 6
P

d 2
i

nðn2 � 1Þ ; ð2:4Þ

where n is the number of alternatives and di is the difference between the ranks of

two MCDMmethods. Based on the value of �ki, the average similarities between the

kth MCDM method and other MCDM methods can be calculated as

�k ¼
1

q � 1

Xq
i¼1;i 6¼k

�ki; k ¼ 1; 2; . . . ; q; ð2:5Þ

where q is the number of MCDM methods. The larger the �k value, the more

important the MCDM method is. Normalized �k values can then be used as weights

for MCDM methods in the secondary ranking.

The third step uses the weights obtained from the second step to get secondary

rankings of classifiers. Each MCDM method is applied to re-rank classification

algorithms using ranking scores produced by MCDM methods in the first step and

the weights obtained in the second step.

3. Experimental Study

The experiment chooses a wide selection of classification algorithms, datasets, and

performance measures to test the proposed approach. The following subsections

describe the data sources, classification algorithms, performance measures, and the

experimental design.

3.1. Data sources

Eleven binary classification datasets are selected to evaluate the performance of

classifiers. Table 1 displays the basic information of these datasets.

All datasets are publicly available at the UCI machine learning repository

(http://archive.ics.uci.edu/ml/). These datasets are selected from a variety of

disciplines, including life science, physical science, social science, and business,

and represent a variation of data structures. Their sizes range from 208 to 19,020;

the number of attributes varies from 4 to 73; and class distributions change

from 93.6/6.4 to 52/48. By averaging the performances of classifiers across the

11 datasets, this study attempts to get a comprehensive evaluation of classification

algorithms.
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3.2. Classification algorithms

Classification algorithms used in the experiment represent five categories: Trees,

rules, Bayesian classifiers, lazy classifiers, and miscellaneous classifiers. All classi-

fiers are implemented in WEKA.45

Trees category includes C4.5 decision tree, decision stump, random tree, and

REP tree. C4.5 is a decision tree algorithm that constructs decision trees in a top-

down recursive divide-and-conquer manner36 and is a commonly used benchmark

classifier. An algorithm for generating grafted C4.5 decision trees is also included.46

Decision stump is a simple one-level decision tree and often used with ensemble

techniques.18 Random tree builds trees by choosing a test based on number of

random features at each node.45 REP tree uses information gain to build a decision

tree and reduced-error pruning (REP) to prune it.45

Rules category includes the zero-attribute rule, conjunctive rule, decision table,

one-attribute rule, and part. The zero-attribute rule, or ZeroR, predicts themode and

is often used to measure the performance of other algorithms. The conjunctive rule

learns a single best rule to predict a class value and assign uncovered test instances to

the default class value of the uncovered training instances.45 Decision table builds a

decision table majority classifier by selecting the right feature subsets. Instances not

covered by a decision table can be determined by the nearest-neighbor method. The

one-attribute rule, or OneR, finds association rules using just one attribute.17 Part

generates partial C4.5 decision trees and obtains rules from the partial trees.10

Bayesian classifiers category includes Bayesian network47 and Naïve Bayes.6

Both classifiers model probabilistic relationships between predictor variables and

the class variable. While Naïve Bayes classifier estimates the class-conditional

probability based on Bayes theorem and can only represent simple distributions,

Bayesian network is a probabilistic graphic model and can represent conditional

independencies between variables. Two forms of Naïve Bayes classifier are included
in this study: the standard probabilistic Naïve Bayes classifier and an incremental

Naïve Bayes classifier.45

Table 1. Summary of UCI datasets.

Dataset No. of Instances No. of Attributes Area Goods/Bads

Adult 48,842 14 Social 75.9/34.1

Breast-cancer (original) 699 10 Life 65.5/34.5

Breast-cancer (diagnostic) 569 32 Life 58/42

Glass 214 10 Physical 52/48

Ionosphere 351 34 Physical 64.1/35.9

Magic gamma telescope 19,020 10 Physical 64.8/35.2

Mammographic 961 5 Life 53.7/46.3

Ozone level detection 2536 73 Physical 93.6/6.4

Pima Indians diabetes 768 8 Life 65.1/34.9

Sonar 208 60 Physical 53.4/46.6

Transfusion 748 4 Business 76.2/23.8
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IB1, a basic instance-based learner provided by WEKA, is chosen to represent

lazy classifiers. An unknown instance is assigned to the same class as the training

instance that is the closest to it measured by Euclidean distance.

In addition to the above mentioned classifiers, Adaboost M1, hyperpipe, and

voting feature interval (VFI) are included. Adaboost M1 algorithm changes weights

of training instances in each iteration to force learning algorithms to put more

emphasis on previously misclassified instances.12 Hyperpipe classifier constructs

a hyperpipe for each category and assigns a new instance to the category that

most contains the instance.45 VFI classifier creates a set of feature intervals and

records class counts for each interval. The class having the highest vote is the

predicted class.13

3.3. Performance measures

Widely used performance measures in classification are accuracy, true positive rate,

true negative rate, mean absolute error (MAE), precision, F-measure, the area

under receiver operating characteristic (AUC), kappa statistic, and computation

time. Definitions of these measures are provided as follows.

. Overall accuracy: Accuracy is the percentage of correctly classified instances.

Overall accuracy ¼ TNþ TP

TPþ FPþ FNþ TN
;

where TN, TP, FN, and FP stand for true negative, true positive, false negative,

and false positive, respectively.

. True Positive (TP): TP is the number of correctly classified positive instances.

TP rate is also called sensitivity measure.

True Positive rate=Sensitivity ¼ TP

TPþ FN
:

. False Positive (FP): FP is the number of positive instances that is misclassified as

negative class. FP rate is called Type-I error.

False Positive rate=Type-I error ¼ FP

FPþ TN
:

. True Negative (TN): TN is the number of correctly classified negative instances.

TN rate is also called specificity measure.

True Negative rate=Specificity ¼ TN

TNþ FP
:

. False Negative (FN): FN is the number of negative instances that is misclassified

as positive class. FN rate is also called Type-II error.

False Negative rate=Type-II error ¼ FN

FNþ TP
:
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. Mean absolute error (MAE): This measures how much the predictions deviate

from the true probability. Pði; jÞ is the estimated probability of i module to be of

class j taking values in [0, 1].9

MAE ¼
P c

j¼1

Pm
i¼1 j f ði; jÞ � Pði; jÞj

m � c :

. Precision: This is the number of classified fault-prone modules that actually are

fault-prone modules.

Precision ¼ TP

TPþ FP
:

. F-measure: It is the harmonic mean of precision and recall. F-measure has been

widely used in information retrieval.1

F-measure ¼ 2� Precision� Recall

Precisionþ Recall
:

. AUC: ROC stands for receiver operating characteristic, which shows the tradeoff

between TP rate and FP rate. AUC represents the accuracy of a classifier. The

larger the area, the better the classifier.

. Kappa statistic (KapS): This is a classifier performance measure that estimates

the similarity between the members of an ensemble in multi-classifiers systems.21

KapS ¼ PðAÞ � PðEÞ
1� PðEÞ :

P(A) is the accuracy of the classifier and P(E) is the probability that agreement

among classifiers is due to chance.

PðEÞ ¼
P c

k¼1

P c
j¼1

Pm
i¼1 f ði; kÞCði; jÞ� � � P c

j¼1

Pm
i¼1 f ði; jÞC ði; kÞ� �� 	

m2
;

where m is the number of modules and c is the number of classes. f ði; jÞ is the

actual probability of i module to be of class j.
Pm

i¼1 f ði; jÞ is the number of

modules of class j. Given threshold �, C�ði; jÞ is 1 if j is the predicted class for

i obtained from Pði; jÞ; otherwise it is 0.9

. Training time: The time needed to train a classification algorithm or ensemble

method.

. Test time: The time needed to test a classification algorithm or ensemble method.

3.4. Experimental design

The experiment was carried out according to the following process:

Input: 11 binary classification datasets

Output: Rankings of classifiers
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Step 1. Prepare target datasets: Select and transform relevant features; data

cleaning; data integration.

Step 2. Train and test the selected classification algorithms on a randomly sampled

partitions (i.e., 10-fold cross-validation) using WEKA 3.7.16

Step 3. Evaluate classification algorithms using TOPSIS, GRA, VIKOR, PRO-

METHEE II, and ELECTRE III. MCDM methods are implemented using

MATLAB 7.0.25

Step 4. Generate the first ranking of classification algorithms provided by each

MCDM method. If there are disagreements among MCDM methods, go to Step 5;

otherwise, end the process.

Step 5. Solve the formulas (2.4) and (2.5) to get the weights of MCDM methods.

Step 6. Recalculate the rankings of classifiers using the MCDM methods with

the ranking produced in Step 4 and the normalizedweights obtained in Step 5 as inputs.

END

Classification algorithm selection problem involves both benefit and cost criteria.

A criterion is called the benefit because the higher a classification algorithm scores

in terms of the corresponding criterion, the better the algorithm is. Seven of the

10 performance metrics used in this study are benefit criteria. They are accuracy,

kappa statistic, TP rate, TN rate, precision, F-measure, and AUC. On the other

hand, a criterion is called the cost because the higher a classification algorithm

scores in terms of the corresponding criterion, the worse the algorithm is.44 Three

performance metrics used in this study are cost criteria: MAE, training, and testing

time. For TOPISIS, ELECTRE III, and PROMETHEE II, criteria or performance

measures are assigned equal weights.

The proposed approach is tested on two individual UCI datasets and all 11

datasets. Classification algorithms are first applied to two UCI datasets (i.e., adult

and magic gamma telescope) and evaluated using the proposed ranking approach.

Then the performances of these classifiers on the 11 UCI datasets are averaged and

ranked using the proposed ranking approach. The classification results and the first

and secondary rankings of classifiers are reported in the following section.

4. Results

4.1. Classification results

4.1.1. Magic gamma telescope dataset

Table 2 shows the testing results of the magic gamma telescope dataset using the

selected classifiers. Each classifier is measured by the ten performance metrics

defined in Sec. 3.3. The best result of each performance measure is highlighted in

boldface. Adaboost M1 algorithm performances well on this dataset and there is no

classification algorithm achieves the best results across all measures.
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4.1.2. Adult dataset

Table 3 summarizes the testing results of the adult dataset using the classifiers. The

best result of each performance measure is highlighted in boldface. Similar to the

magic gamma telescope data, there is no classification algorithm that has the best

results on all measures, and the performances of classifiers on this dataset are more

divergent than on the magic gamma telescope data. Adaboost M1 algorithm, which

performances significantly better than other classifiers on the magic gamma tele-

scope data, only achieves the best MAE on the adult dataset.

4.1.3. Average of 11 datasets

Table 4 summarizes the testing results of the adult dataset using the selected

17 classifiers. The best result of each performance measure is highlighted in boldface.

Similar to the previous two datasets, best performance measures are achieved by

difference classification algorithms.

4.2. MCDM rankings

Following the proposed approach and the experimental design, the five MCDM

methods are applied to rank 17 classification algorithms using the classification

results of the magic gamma telescope, adult, and the average of all 11 datasets.

4.2.1. Magic gamma telescope dataset

The ranking scores of classifiers generated by TOPSIS, GRA, VIKOR, PRO-

METHEE II, and ELECTRE III for the magic gamma telescope dataset are sum-

marized in Table 5. Each MCDM method provides a value and ranking for each

classifier based on their performances on the testing data.

For the magic gamma telescope data, five MCDM methods all rank Adaboost

M1 algorithm as the best classifier. However, their rankings for IB1 are quite different.

While TOPSIS ranks IB1 as the second best classifier for this datasets, VIKOR,

PROMETHEE, and ELECTRE rank it as the 8th classifier. In fact, the five MCDM

methods agree on only three classifiers: Adaboost M1, HyperPipes, and ZeroR.

4.2.2. Adult data

The ranking scores of classifiers generated by TOPSIS, GRA, VIKOR, PRO-

METHEE II, and ELECTRE III for the adult dataset are summarized in Table 6.

The five MCDM methods agree on no classifier over the adult dataset. The ranking

results can be expected since the performances of the classifiers on the adult data are

divergent (see Table 3).

4.2.3. Average of 11 datasets

Table 7 reports the rankings of classifiers generated by the five MCDM methods

based on their average classification results on 11 datasets. Similar to the adult

dataset, the five MCDM methods cannot reach an agreement on any classifier.
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Results of the three tests indicate that different MCDMmethods may have strong

disagreements. Therefore, the next step applies Spearman’s rank correlation coeffi-

cient to generate secondary rankings in an attempt to resolve the inconsistency.

4.3. Secondary MCDM rankings

The goal of the secondary ranking is to determine a set of weights forMCDMmethods

by solving the formulas (2.4) and (2.5). Before the computation, the ranking scores of

the MCDMmethods need to be standardized. The ranking scores of TOPSIS, GRA,

PROMETHEE II, and ELECTRE III are standardized using (x-min)/(max-min);

and the Q ranking scores of VIKOR are standardized using (max-x)/(max-min). The

standardized MCDM ranking scores for the magic gamma telescope, adult, and the

11 datasets are presented in Tables 8�10, respectively.

4.3.1. Magic gamma telescope dataset

The standardized ranking scores are used to calculate the weights and normalized

weights of the MCDM methods. The results are presented in Table 11.

Based on the standardized ranking scores and the normalized weights of the

MCDM methods, the secondary rankings of classifiers on the magic gamma tele-

scope dataset are computed and summarized in Table 12. The five MCDM methods

provide the same rankings for 11 classifiers. Rankings of TOPSIS and GRA agree on

all the classifiers, and differ from VIKOR and PROMETHEE II on only two clas-

sifiers. The degrees of disagreements on the rankings of classifiers among MCDM

methods are also reduced.

Table 8. Standardized MCDM ranking scores for magic gamma telescope dataset.

Classifiers TOPSIS GRA VIKOR PROMETHEE II ELECTRE III

Bayes net 0.5482 0.3093 0.3887 0.5039 0.5953

Naïve Bayes 0.3328 0.141 0.3722 0.3386 0.4209

Incremental Naïve Bayes 0.3329 0.141 0.396 0.2913 0.4226

IB1 0.833 0.5641 0.4132 0.5118 0.7069

AdaBoost M1 1 1 1 1 1

HyperPipes 0.0138 0.0096 0.0143 0.0709 0.1017

VFI 0.0153 0.0105 0.1349 0.1811 0.1944

Conjunctive rule 0.4018 0.2857 0.2006 0.4094 0.4223

Decision table 0.7197 0.4979 0.4451 0.6378 0.8157

OneR 0.195 0.0634 0.1542 0.126 0.1955

PART 0.8048 0.6736 0.4715 0.7087 0.8852

ZeroR 0 0 0 0 0

Decision stump 0.2859 0.1651 0.1451 0.2047 0.2833

C4.5 0.7859 0.6631 0.4414 0.7165 0.8445

Grafted C4.5 0.7958 0.6813 0.4229 0.7717 0.8322

Random tree 0.6983 0.5049 0.4149 0.6378 0.7408

REP tree 0.7775 0.6597 0.4149 0.6535 0.8021
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Table 10. Standardized MCDM ranking scores for all datasets.

Classifiers TOPSIS GRA VIKOR PROMETHEE II ELECTRE III

Bayes net 0.9929 1 0.983 0.9438 1

Naïve Bayes 0.8654 0.752 0.8669 0.5843 0.8539

Incremental Naïve Bayes 0.8654 0.7518 0.8669 0.4607 0.8539

IB1 0.6481 0.6747 0.3936 0.7079 0.8061

AdaBoost M1 0.6978 0.8875 0.4401 0.9213 0.902

HyperPipes 0.3478 0.3643 0.2314 0.2135 0.3293

VFI 0.5831 0.4688 0.5187 0.1685 0.5488

Conjunctive rule 0.5824 0.3848 0.6311 0 0.3846

Decision table 0.874 0.7142 0.8685 0.4944 0.8784

OneR 0.6773 0.5226 0.7331 0.236 0.5439

PART 0.8358 0.9417 0.7282 1 0.9381

ZeroR 0 0 0 0.0112 0

Decision stump 0.671 0.5051 0.7056 0.2247 0.5286

C4.5 1 0.9463 1 0.9438 0.989

Grafted C4.5 0.9959 0.9394 0.9968 0.9438 0.9898

Random tree 0.8644 0.7181 0.8917 0.4944 0.8465

REP tree 0.8914 0.7547 0.9108 0.6292 0.8861

Table 11. Weights of MCDM methods for magic gamma telescope dataset.

TOPSIS GRA VIKOR PROMETHEE II ELECTRE III

Weights 0.93811 0.95343 0.93689 0.95772 0.9663

Normalized

weights

0.1974 0.20062 0.19714 0.20152 0.20333

Table 9. Standardized MCDM ranking scores for adult dataset.

Classifiers TOPSIS GRA VIKOR PROMETHEE II ELECTRE III

Bayes net 0.8005 0.9476 0.5309 0.8687 0.8635

Naïve Bayes 0.7336 0.6903 0.5322 0.697 0.7686

Incremental Naïve Bayes 0.7336 0.6903 0.5322 0.6162 0.7705

IB1 0.6549 0.5069 0.4339 0.3232 0.4628

AdaBoost M1 0.9633 0.9533 0.833 0.8788 0.93

HyperPipes 0 0 0 0.1717 0.0964

VFI 0.361 0.412 0.1752 0.3636 0.4367

Conjunctive rule 0.0308 0.0195 0.0152 0.2121 0.1232

Decision table 0.8307 0.8956 0.4873 0.8384 0.911

OneR 0.4106 0.3484 0.2194 0.3535 0.402

PART 1 0.9888 1 0.9394 1

ZeroR 0.0289 0.0177 0.013 0 0

Decision stump 0.1678 0.1257 0.0839 0.0808 0.136

C4.5 0.8569 0.9914 0.507 0.9293 0.9261

Grafted C4.5 0.8672 1 0.5109 1 0.9442

Random tree 0.583 0.4283 0.3034 0.404 0.4912

REP tree 0.7838 0.7665 0.4097 0.596 0.789
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4.3.2. Adult dataset

Table 13 summarizes the weights and normalized weights of the five MCDM

methods for the adult data.

The secondary rankings of classifiers on adult dataset are reported in Table 14.

Ten classifiers got the same rankings on this dataset. The degrees of disagreements

on the rankings of classifiers are greatly reduced.

4.3.3. Average of 11 datasets

The weights and normalized weights of the five MCDM methods for all 11 datasets

are shown in Table 15.

The secondary rankings of classifiers on all the dataset are reported in Table 16.

The five MCDM methods generate the same rankings on 10 classifiers. Rankings of

classifiers produced by TOPSIS and PROMETHEE II are the same. The degrees of

disagreements on the rankings of classifiers are greatly reduced compared with the

original MCDM rankings.

The results of magic gamma telescope, adult, and all 11 datasets indicate that

the secondary rankings of the MCDM methods are now in strong agreement.

Specifically, classifiers that got the same rankings have increased from three to 11

for the magic gamma telescope dataset. For adult and the average of 11 datasets,

the agreements of the five MCDM methods on classifiers have changed from zero to

10. Though the rankings of classifiers are not identical, the differences among the

five MCDM methods have been largely reduced.

5. Conclusion

MCDM methods are feasible tools for selecting classification algorithms because the

task of algorithms selection normally involves more than one criterion and can be

modeled as MCDM problems. Since different MCDM methods evaluate classifiers

from different aspects, they may produce divergent rankings.

This paper proposed an approach that uses Spearman’s rank correlation coeffi-

cient to reconcile conflicting rankings generated by different MCDM methods for

classification algorithms. The key of the proposed approach is to determine a weight

for each MCDM method according to the similarities between the ranking it gen-

erated and the rankings produced by other MCDM methods. An MCDM method

that has a larger Spearman’s rank correlation coefficient is considered more

important than one with a smaller Spearman’s rank correlation coefficient because it

has better agreements with other MCDM methods.

An experimental study was designed to validate the proposed approach. First,

17 classifiers were applied to 11 binary UCI classification datasets and the classifi-

cation results were measured using 10 performance measures. Second, five MCDM

methods (i.e., TOPSIS, GRA, VIKOR, PROMETHEE II, and ELECTRE III) were

used to evaluate the classification algorithms based on their performances on the
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measures over magic gamma telescope data, adult data, and the collection of all

11 datasets. The rankings produced by the five MCDM methods for the three data

are quite different. Third, the weights of MCDM methods were calculated using

Spearman’s rank correlation coefficient equations. The normalized weights and the

rankings generated at the second stage were used as inputs to produce the secondary

rankings of classifiers. The results indicate that the approach proposed can provide a

compatible ranking when different MCDM techniques disagree.
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