Interpreting variable importance for multinomial logistic regression - `nnet::multinom()` and `caret::varImp()`

Hi @martinctc, First welcome to the community.

You say that you post the same issue on stack. Can u link it here? See the doc in the faq about cross-post

Now your question. The VarImp here is the sum of absolute value of coef of a variable.

# library(tidyverse)
library(nnet)
library(caret)
#> Le chargement a nécessité le package : lattice
#> Le chargement a nécessité le package : ggplot2

fit <- multinom(Species ~ ., data = iris) # fit model
#> # weights:  18 (10 variable)
#> initial  value 164.791843 
#> iter  10 value 16.177348
#> iter  20 value 7.111438
#> iter  30 value 6.182999
#> iter  40 value 5.984028
#> iter  50 value 5.961278
#> iter  60 value 5.954900
#> iter  70 value 5.951851
#> iter  80 value 5.950343
#> iter  90 value 5.949904
#> iter 100 value 5.949867
#> final  value 5.949867 
#> stopped after 100 iterations

fit
#> Call:
#> multinom(formula = Species ~ ., data = iris)
#> 
#> Coefficients:
#>            (Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
#> versicolor    18.69037    -5.458424   -8.707401     14.24477   -3.097684
#> virginica    -23.83628    -7.923634  -15.370769     23.65978   15.135301
#> 
#> Residual Deviance: 11.89973 
#> AIC: 31.89973

Created on 2020-02-27 by the reprex package (v0.2.1)

For instance:
For Sepal.length his importance ( 13.38206) is the sum of abs(-5.458424)and abs(-7.923634).

Hope it help