Hi, what you want to do is done with joins. Here is an example that should put you on a right track:
suppressPackageStartupMessages(library(tidyverse))
tibble1 <- tibble(year = as.character(1981:1989), value = rnorm(9))
tibble2 <- tibble(year = sample(as.character(1981:1989), size = 6), value = rnorm(6))
tibble1
#> # A tibble: 9 x 2
#> year value
#> <chr> <dbl>
#> 1 1981 -0.580
#> 2 1982 -0.0376
#> 3 1983 0.913
#> 4 1984 -0.737
#> 5 1985 -0.387
#> 6 1986 0.0912
#> 7 1987 3.76
#> 8 1988 1.10
#> 9 1989 -0.940
tibble2
#> # A tibble: 6 x 2
#> year value
#> <chr> <dbl>
#> 1 1987 0.874
#> 2 1989 -0.282
#> 3 1984 -0.100
#> 4 1982 1.01
#> 5 1983 0.672
#> 6 1986 1.34
tibble1$value - tibble2$value
#> Warning in tibble1$value - tibble2$value: longer object length is not a
#> multiple of shorter object length
#> [1] -1.4531519 0.2439863 1.0131162 -1.7449109 -1.0591744 -1.2475435
#> [7] 2.8834482 1.3785701 -0.8390908
dplyr::full_join(tibble1, tibble2, by = "year") %>%
dplyr::mutate(diff = value.x - value.y)
#> # A tibble: 9 x 4
#> year value.x value.y diff
#> <chr> <dbl> <dbl> <dbl>
#> 1 1981 -0.580 NA NA
#> 2 1982 -0.0376 1.01 -1.05
#> 3 1983 0.913 0.672 0.241
#> 4 1984 -0.737 -0.100 -0.637
#> 5 1985 -0.387 NA NA
#> 6 1986 0.0912 1.34 -1.25
#> 7 1987 3.76 0.874 2.88
#> 8 1988 1.10 NA NA
#> 9 1989 -0.940 -0.282 -0.658
Created on 2018-10-23 by the reprex package (v0.2.1)
In the future, it is always helpful to try to put your question in a reprex (similar to what I did above). There is more info about how to do it here: