How to represent in my PCOA analysis, only microorganisms greater than 0.01 of my total sample?

NMDS: Non-metric multidimensional scaling ( NMDS ) is an indirect gradient analysis approach which produces an ordination based on a distance or dissimilarity matrix. ... Any dissimilarity coefficient or distance measure may be used to build the distance matrix used as input. NMDS is a rank-based approach.

I would like to obtain this analysis


But with this differences

Two ellipses that cross each other means that there is similarity between them, when they do not cross each other, there are differences. As you can see in my barplot there are differences in the three months with respect to the microorganism communities.

And there are even more differences with respect to the month of August, and this is not being presented in the NMDS analysis.

I don't understand what your question is, I'm sorry.

Below is the correct barplot script, this is very summarized in information. I can't paste everything. So you can see that these differences were obtained because I first filtered per month.

library (tidyverse)
Family <-data.frame (tibble::tribble(
                        ~index, ~Bacteroidia, ~Cytophagia, ~Flavobacteriia, ~Sphingobacteriia, ~Un.Bacteroidetes,
                          "1A",            7,          78,            5539,               255,                57,
                          "1B",           36,           4,            4820,                34,                33,
                          "1C",           32,         157,             453,               329,                64,
                          "1D",            0,          35,            1542,               113,                 0,
                          "1E",          718,          90,            1975,              2401,               206,
                          "1F",          443,         204,            6944,              1704,              1671,
                          "1G",           49,           0,            2986,                34,               260,
                          "1H",         1040,         201,           10193,               351,               971,
                          "2A",          521,         231,           13510,               687,               504,
                          "2B",          845,          34,            8609,               299,               468,
                          "2C",          314,          38,           14687,               155,                68,
                          "2D",           24,         138,            2195,               759,               369,
                          "2E",            0,          70,            5734,               309,                10,
                          "2F",          668,          45,            7914,               464,               149,
                          "2G",           20,         141,           10438,               257,               154,
                          "2H",          168,           2,           12092,               954,              1459,
                          "3A",         1134,         639,            2613,               950,              1064,
                          "3B",            4,           0,             198,                33,                63,
                          "3C",          173,          18,            2493,               311,                48,
                          "3D",            0,          43,            2015,                41,                 0,
                          "3E",           62,          14,            2434,               478,                72,
                          "3F",          346,          49,            3093,               339,               518,
                          "3G",          431,          80,            2655,               456,               618,
                          "3H",           25,           0,             481,                 0,                19,
                          "4A",         1915,         345,            4426,              3228,              5273,
                          "4B",            0,          22,           13326,               280,               220,
                          "4C",           45,           0,            5156,                84,                50,
                          "4D",           46,          57,            4905,               824,               209,
                          "4E",          192,         126,            3572,              1135,               465,
                          "4F",            0,           0,             508,                 0,                 0,
                          "4G",            4,         187,            8384,               845,                13,
                          "4H",         1730,          52,           20979,               880,              5162,
                          "5A",            0,          15,            5376,              1091,                 6,
                          "5B",           26,         842,            2095,               542,               337,
                          "5C",            0,           0,             124,               136,                42,
                          "5D",          260,           9,            7567,                88,               173,
                          "5E",          367,          74,            8499,               501,               341,
                          "5F",          556,          25,           11238,               522,              1159,
                          "5G",            0,           0,              45,               936,                77,
                          "5H",            0,           0,            6477,              1662,                22,
                          "6A",          478,          85,           14459,               833,               635,
                          "6B",            9,         115,           18826,               254,                60,
                          "6C",          152,          57,            3766,               412,               243,
                          "6D",            0,          95,            7290,               295,                19,
                          "6E",          135,          49,            2360,              1114,               299,
                          "6F",          300,          81,            8547,               828,              1113,
                          "6G",            0,           8,            2259,              4441,                 0,
                          "6H",         2462,         371,           34631,              1635,              1046,
                          "7A",            0,         297,            4451,               482,                16,
                          "7B",            9,         371,            1463,               102,                 9,
                          "7C",          127,         118,            3369,                82,                 0,
                          "7D",          688,         218,           22223,               253,               223,
                          "7E",         1214,          37,           13024,               773,               731,
                          "7F",          806,           3,           12968,                39,               569,
                          "7G",           13,           0,              54,                50,                25,
                          "7H",            0,           0,            1271,               635,                 0,
                          "8A",          577,          56,           13347,               765,               772,
                          "8B",          257,         149,           20001,               803,              1048,
                          "8C",          171,          37,            9434,               191,               195,
                          "8D",          355,         297,            3656,              2276,               794,
                          "8E",          856,          63,            2137,               467,               903,
                          "8F",          375,         117,           15910,               715,               778,
                          "8G",           65,           0,             371,               476,               292,
                          "8H",          149,          12,           12858,               519,               599,
                          "9A",            0,         609,            2101,               319,               116,
                          "9B",          289,         907,            4950,              1355,               590,
                          "9C",            0,          22,            1610,                 0,                 0,
                          "9D",          362,         710,            5405,              2516,               584,
                          "9E",         1281,         251,           17001,               978,              1097,
                          "9F",          456,           8,           42392,              1355,              1030,
                          "9G",            0,          13,             810,              1534,               194,
                          "9H",          371,          10,            2063,               440,               776,
                         "10A",            6,          98,           11000,                98,                58,
                         "10B",           23,           2,           13856,               100,               109,
                         "10C",            0,          36,            1650,               359,               105,
                         "10D",          213,          62,           10338,                73,                 5,
                         "10E",           63,          10,            5733,               173,                50,
                         "10F",          106,           6,           10509,               278,               603,
                         "10G",          238,           4,            1506,               259,               304,
                         "10H",           32,           2,            2512,               170,                41,
                         "11A",            0,          12,              74,                 0,                 0,
                         "11B",            0,           0,             778,                 0,                 3,
                         "11C",            0,          62,            2852,               331,                32,
                         "11D",          261,         376,            2849,              1618,               554,
                         "11E",          310,          29,            7664,               458,               271,
                         "11F",            2,         141,            3557,               474,                 0,
                         "11G",            0,          52,            1139,               424,                35,
                         "11H",           22,         203,           10735,              2474,                53,
                         "12A",           70,          11,           27508,               520,               406,
                         "12B",          636,          13,            9453,               448,               501,
                         "12C",           59,           8,           16805,               346,               430,
                         "12D",           63,          30,             223,               580,               956,
                         "12E",            6,         346,            6035,               304,               200,
                         "12F",           86,          63,            9172,              1041,               668,
                         "12G",          379,          42,           15882,              1723,              1842,
                         "12H",          385,          45,           25224,              2824,              1233
                        )
)

data<- Family
attach(Family)
rwnames <- index
data <- as.data.frame(data[,-1])
rownames(data) <- rwnames

Metadata<- data.frame (tibble::tribble(
  ~SampleID, ~SamplingPoint,         ~Depth,      ~Month,
       "1A",         "CEA1",        "80 cm",      "July",
       "1B",         "CEA2",        "80 cm",      "July",
       "1C",         "CEA4", "Interstitial",      "July",
       "1D",         "CEA1",        "80 cm",    "August",
       "1E",         "CEA3",        "80 cm",    "August",
       "1F",         "CEA5",        "80 cm",    "August",
       "1G",         "CEA2",        "80 cm", "September",
       "1H",         "CEA4",        "80 cm", "September",
       "2A",         "CEA1",        "80 cm",      "July",
       "2B",         "CEA2", "Interstitial",      "July",
       "2C",         "CEA4", "Interstitial",      "July",
       "2D",         "CEA1",        "80 cm",    "August",
       "2E",         "CEA3",        "80 cm",    "August",
       "2F",         "CEA5",        "80 cm",    "August",
       "2G",         "CEA2",        "80 cm", "September",
       "2H",         "CEA4",        "80 cm", "September",
       "3A",         "CEA1", "Interstitial",      "July",
       "3B",         "CEA2", "Interstitial",      "July",
       "3C",         "CEA4",        "80 cm",      "July",
       "3D",         "CEA1", "Interstitial",    "August",
       "3E",         "CEA3", "Interstitial",    "August",
       "3F",         "CEA5", "Interstitial",    "August",
       "3G",         "CEA2", "Interstitial", "September",
       "3H",         "CEA4", "Interstitial", "September",
       "4A",         "CEA1", "Interstitial",      "July",
       "4B",         "CEA3",        "80 cm",      "July",
       "4C",         "CEA4", "Interstitial",      "July",
       "4D",         "CEA1", "Interstitial",    "August",
       "4E",         "CEA3", "Interstitial",    "August",
       "4F",         "CEA5", "Interstitial",    "August",
       "4G",         "CEA2", "Interstitial", "September",
       "4H",         "CEA4", "Interstitial", "September",
       "5A",         "CEA1",        "80 cm",      "July",
       "5B",         "CEA3",        "80 cm",      "July",
       "5C",         "CEA4", "Interstitial",      "July",
       "5D",         "CEA1",        "80 cm",    "August",
       "5E",         "CEA3",        "80 cm",    "August",
       "5F",         "CEA5",        "80 cm",    "August",
       "5G",         "CEA2",        "80 cm", "September",
       "5H",         "CEA4",        "80 cm", "September",
       "6A",         "CEA1",        "80 cm",      "July",
       "6B",         "CEA3", "Interstitial",      "July",
       "6C",         "CEA5",        "80 cm",      "July",
       "6D",         "CEA1",        "80 cm",    "August",
       "6E",         "CEA3", "Interstitial",    "August",
       "6F",         "CEA5", "Interstitial",    "August",
       "6G",         "CEA2", "Interstitial", "September",
       "6H",         "CEA4", "Interstitial", "September",
       "7A",         "CEA1", "Interstitial",      "July",
       "7B",         "CEA3", "Interstitial",      "July",
       "7C",         "CEA5",        "80 cm",      "July",
       "7D",         "CEA2",        "80 cm",    "August",
       "7E",         "CEA4",        "80 cm",    "August",
       "7F",         "CEA1",        "80 cm", "September",
       "7G",         "CEA3",        "80 cm", "September",
       "7H",         "CEA5",        "80 cm", "September",
       "8A",         "CEA1", "Interstitial",      "July",
       "8B",         "CEA3",        "80 cm",      "July",
       "8C",         "CEA5", "Interstitial",      "July",
       "8D",         "CEA2",        "80 cm",    "August",
       "8E",         "CEA4",        "80 cm",    "August",
       "8F",         "CEA1",        "80 cm", "September",
       "8G",         "CEA3",        "80 cm", "September",
       "8H",         "CEA5",        "80 cm", "September",
       "9A",         "CEA2",        "80 cm",      "July",
       "9B",         "CEA3", "Interstitial",      "July",
       "9C",         "CEA5", "Interstitial",      "July",
       "9D",         "CEA2", "Interstitial",    "August",
       "9E",         "CEA4", "Interstitial",    "August",
       "9F",         "CEA1", "Interstitial", "September",
       "9G",         "CEA3", "Interstitial", "September",
       "9H",         "CEA5", "Interstitial", "September",
      "10A",         "CEA2",        "80 cm",      "July",
      "10B",         "CEA3", "Interstitial",      "July",
      "10C",         "CEA5",        "80 cm",      "July",
      "10D",         "CEA2", "Interstitial",    "August",
      "10E",         "CEA4", "Interstitial",    "August",
      "10F",         "CEA1", "Interstitial", "September",
      "10G",         "CEA3", "Interstitial", "September",
      "10H",         "CEA5", "Interstitial", "September",
      "11A",         "CEA2", "Interstitial",      "July",
      "11B",         "CEA4",        "80 cm",      "July",
      "11C",         "CEA5", "Interstitial",      "July",
      "11D",         "CEA2",        "80 cm",    "August",
      "11E",         "CEA4",        "80 cm",    "August",
      "11F",         "CEA1",        "80 cm", "September",
      "11G",         "CEA3",        "80 cm", "September",
      "11H",         "CEA5",        "80 cm", "September",
      "12A",         "CEA2", "Interstitial",      "July",
      "12B",         "CEA4",        "80 cm",      "July",
      "12C",         "CEA1", "Interstitial",    "August",
      "12D",         "CEA2", "Interstitial",    "August",
      "12E",         "CEA4", "Interstitial",    "August",
      "12F",         "CEA1", "Interstitial", "September",
      "12G",         "CEA3", "Interstitial", "September",
      "12H",         "CEA5", "Interstitial", "September"
  )
)

attach(Metadata)
rwnames <- SampleID
Metadata <- as.data.frame(Metadata[,-1])
rownames(Metadata) <- rwnames

#SUBSET DE MONTH
Jul <- subset(data, Metadata$Month == "July", select = c(`Bacteroidia`:`Un.Bacteroidetes`))
Aug <- subset(data, Metadata$Month == "August", select = c(`Bacteroidia`:`Un.Bacteroidetes`))
Sep <- subset(data, Metadata$Month == "September", select = c(`Bacteroidia`:`Un.Bacteroidetes`))

Metadata$Month <- factor(Metadata$Month,
                         levels = c("Jul", "Aug", "Sep"))

#July
Jul <- data.frame(Jul)
Jul_counts <- colSums(Jul)
Counts <- unname(Jul_counts)
Jul_counts <- data.frame(Jul_counts)
Jul_counts <- t(Jul_counts)
total <- sum(Counts)
rel_ab <- Jul_counts/total
Others <- rel_ab[,colMeans(rel_ab)<.01]
Others <- sum(Others)
rel_ab <- rel_ab[,colMeans(rel_ab)>=.01]
rel_ab <- data.frame(t(rel_ab), Others)
rel_ab_P <- t(rel_ab)
abundance <- c("abundance")
rel_ab_P <- data.frame(rel_ab_P)
write.csv(rel_ab_P, file = "~/RSTUDIO/Bacteria-total/Bacteria-total-clase_JUL_R.csv")
Jul <- read.csv("~/RSTUDIO/Bacteria-total/Bacteria-total-clase_JUL_R.csv")

#August
Aug <- data.frame(Aug)
Aug_counts <- colSums(Aug)
Counts <- unname(Aug_counts)
Aug_counts <- data.frame(Aug_counts)
Aug_counts <- t(Aug_counts)
total <- sum(Counts)
rel_ab <- Aug_counts/total
Others <- rel_ab[,colMeans(rel_ab)<.01]
Others <- sum(Others)
rel_ab <- rel_ab[,colMeans(rel_ab)>=.01]
rel_ab <- data.frame(t(rel_ab), Others)
rel_ab_P <- t(rel_ab)
abundance <- c("abundance")
rel_ab_P <- data.frame(rel_ab_P)
write.csv(rel_ab_P, file = "~/RSTUDIO/Bacteria-total/Bacteria-total-clase_AGU_R.csv")
Aug <- read.csv("~/RSTUDIO/Bacteria-total/Bacteria-total-clase_AGU_R.csv")

#September
Sep <- data.frame(Sep)
Sep_counts <- colSums(Sep)
Counts <- unname(Sep_counts)
Sep_counts <- data.frame(Sep_counts)
Sep_counts <- t(Sep_counts)
total <- sum(Counts)
rel_ab <- Sep_counts/total
Others <- rel_ab[,colMeans(rel_ab)<.01]
Others <- sum(Others)
rel_ab <- rel_ab[,colMeans(rel_ab)>=.01]
rel_ab <- data.frame(t(rel_ab), Others)
rel_ab_P <- t(rel_ab)
abundance <- c("abundance")
rel_ab_P <- data.frame(rel_ab_P)
write.csv(rel_ab_P, file = "~/RSTUDIO/Bacteria-total/Bacteria-total-clase_SEP_R.csv")
Sep <- read.csv("~/RSTUDIO/Bacteria-total/Bacteria-total-clase_SEP_R.csv")

Family_colors <- c(
  "#b988d5","#cbd588", "#88a5d5",
  "#673770","#D14285", "#652926", "#C84248", 
  "#8569D5", "#5E738F","#D1A33D", "#8A7C64", "#599861"
)


library(ggplot2)
library(scales)
#> 
#> Attaching package: 'scales'
#> The following object is masked from 'package:purrr':
#> 
#>     discard
#> The following object is masked from 'package:readr':
#> 
#>     col_factor
ggplot() +geom_bar(aes(y = rel_ab_P*100, x= "Jul", fill = X), data = Jul,
                   stat="identity", width = .5)+ geom_bar(aes(y = rel_ab_P*100, x= "Aug", fill = X), data = Aug,
                                                          stat="identity",width=.5)+
  scale_x_discrete(
    labels = c("Jul", "Aug", "Sep"), 
    drop = FALSE
  ) +
  geom_bar(aes(y = rel_ab_P*100, x= "Sep", fill = X), data = Sep,
           stat="identity", width = .5)+
  theme_classic()+
  theme(legend.title = element_blank())+
  ylab("Relative Abundance >.01% \n")+
  xlab("Month")+
  scale_fill_manual(values = Family_colors)

Created on 2020-03-04 by the reprex package (v0.3.0)