Is this what you mean?
library(dplyr)
sample_df %>%
group_by(year) %>%
summarise(across(starts_with("v"), .fns = list("sum" = sum, mean = mean), na.rm = TRUE))
#> # A tibble: 33 x 13
#> year v1_sum v1_mean v2_sum v2_mean v3_sum v3_mean v4_sum v4_mean v5_sum
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1989 0 NaN 0 NaN 0 NaN 0 NaN 0
#> 2 1990 0 NaN 0 NaN 0 NaN 0 NaN 0
#> 3 1991 21431. 21431. 0 NaN 370. 370. 0.150 0.150 0.0173
#> 4 1992 26774. 26774. 0 NaN 602. 602. 0.150 0.150 0.0225
#> 5 1993 86064. 28688. 0 NaN 2356. 785. 0.390 0.130 0.182
#> 6 1994 111702. 37234. 0 NaN 3845 1282. 0.390 0.130 0.199
#> 7 1995 155147. 38787. 0 NaN 5514. 1379. 0.407 0.102 0.255
#> 8 1996 169002 42250. 0 NaN 8196. 2049. 0.407 0.102 0.323
#> 9 1997 203617. 50904. 0.64 0.64 11175. 2794. 0.509 0.127 0.272
#> 10 1998 264642. 66161. 3.96 1.32 16454. 4114. 0.751 0.188 0.278
#> # … with 23 more rows, and 3 more variables: v5_mean <dbl>, v6_sum <dbl>,
#> # v6_mean <dbl>
Created on 2021-07-22 by the reprex package (v2.0.0)
Note: Next time please provide a proper REPRoducible EXample (reprex) illustrating your issue.