Thanks for including the code. I've reproduced it in reprex form using the reprex
addin to RStudio, which is always helpful to peeps looking at the question.
If I have understood the question correctly, a solution is at the end
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
trayectory<-data.frame(stringsAsFactors=FALSE,
ID_Name = c("%%EDH_WSN", "%DIPA_PITES", "%DIPI_LADAT", "%DRSI_SITET",
"%200_BAKER", "%%WSN_EDH", "%PITES_DIPA", "%BAKER_200"),
ID_Name_New = c("%%EDH_WSN", "%DIPA_PITES", "%DIPI_LADAT", "%DRSI_SITET",
"%200_BAKER", "%%EDH_WSN", "%DIPA_PITES", "%200_BAKER")
)
solution<-data.frame(stringsAsFactors=FALSE,
ID_Name = c("%%EDH_WSN", "%DIPA_PITES", "%DIPI_LADAT",
"%DRSI_SITET", "%200_BAKER", "%%WSN_EDH",
"%PITES_DIPA", "%BAKER_200"),
ID_Name_New = c("%%EDH_WSN", "%DIPA_PITES", "%DIPI_LADAT",
"%DRSI_SITET", "%200_BAKER", "%%EDH_WSN",
"%DIPA_PITES", "%200_BAKER"),
Trafico_Enfrentado = c("YES", "YES", "NO", "NO", "YES", "YES", "YES", "YES"),
Which_Segment = c("%%WSN_EDH", "%PITES_DIPA", "NA", "NA",
"%BAKER_200", "%%EDH_WSN", "%DIPA_PITES",
"%200_BAKER")
)
solution %>% group_by(Trafico_Enfrentado) %>% count()
#> # A tibble: 2 x 2
#> # Groups: Trafico_Enfrentado [2]
#> Trafico_Enfrentado n
#> <chr> <int>
#> 1 NO 2
#> 2 YES 6
Created on 2019-12-15 by the reprex package (v0.3.0)