2 Y axes problem

I see, so maybe like this?

library(tidyverse)

tibble(
  date = seq(as.Date("2023-10-01"), by = 1, length.out = 4),
  min = 1:4,
  max = 5:8
) -> depth

depth
#> # A tibble: 4 × 3
#>   date         min   max
#>   <date>     <int> <int>
#> 1 2023-10-01     1     5
#> 2 2023-10-02     2     6
#> 3 2023-10-03     3     7
#> 4 2023-10-04     4     8
tibble(
  date = seq(as.Date("2023-10-01"), by = 1, length.out = 4),
  min = 11:14,
  max = 15:18
) -> temp

temp
#> # A tibble: 4 × 3
#>   date         min   max
#>   <date>     <int> <int>
#> 1 2023-10-01    11    15
#> 2 2023-10-02    12    16
#> 3 2023-10-03    13    17
#> 4 2023-10-04    14    18

If so, it would make plotting easier if the tables depth and temp were combined like this:

depth |> 
  mutate(measure = 'depth') |> 
  bind_rows(
    temp |> 
      mutate(measure = 'temp')
  ) -> depth_plus_temp

depth_plus_temp
#> # A tibble: 8 × 4
#>   date         min   max measure
#>   <date>     <int> <int> <chr>  
#> 1 2023-10-01     1     5 depth  
#> 2 2023-10-02     2     6 depth  
#> 3 2023-10-03     3     7 depth  
#> 4 2023-10-04     4     8 depth  
#> 5 2023-10-01    11    15 temp   
#> 6 2023-10-02    12    16 temp   
#> 7 2023-10-03    13    17 temp   
#> 8 2023-10-04    14    18 temp

and then the depth_plus_temp table were reformatted to be longer

depth_plus_temp |> 
  pivot_longer(min:max, names_to = 'extreme') -> depth_plus_temp_long

depth_plus_temp_long
#> # A tibble: 16 × 4
#>    date       measure extreme value
#>    <date>     <chr>   <chr>   <int>
#>  1 2023-10-01 depth   min         1
#>  2 2023-10-01 depth   max         5
#>  3 2023-10-02 depth   min         2
#>  4 2023-10-02 depth   max         6
#>  5 2023-10-03 depth   min         3
#>  6 2023-10-03 depth   max         7
#>  7 2023-10-04 depth   min         4
#>  8 2023-10-04 depth   max         8
#>  9 2023-10-01 temp    min        11
#> 10 2023-10-01 temp    max        15
#> 11 2023-10-02 temp    min        12
#> 12 2023-10-02 temp    max        16
#> 13 2023-10-03 temp    min        13
#> 14 2023-10-03 temp    max        17
#> 15 2023-10-04 temp    min        14
#> 16 2023-10-04 temp    max        18

Created on 2024-04-01 with reprex v2.0.2

Could you do that with your tables and then post the following output?

depth_plus_temp_long |> 
  group_by(measure) |> 
  slice(1:50) |> 
  ungroup() |> 
  dput()